Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>

Abstract Context: The bottleneck on interval type-2 fuzzy logic systems is the output processing when using Centroid Type-Reduction + Defuzzification (CTR+D method). Nie and Tan proposed an approximation to CTR+D (NT method). Recently, Mendel and Liu improved the NT method (INT method). Numerical e...

Full description

Bibliographic Details
Main Authors: Omar Salazar, Juan Diego Rojas, Humberto Serrano
Format: Article
Language:Spanish
Published: Universidad Distrital Francisco José de Caldas 2016-05-01
Series:Ingeniería
Subjects:
Online Access:http://revistas.udistrital.edu.co/ojs/index.php/reving/article/view/9370
_version_ 1811320054584705024
author Omar Salazar
Juan Diego Rojas
Humberto Serrano
author_facet Omar Salazar
Juan Diego Rojas
Humberto Serrano
author_sort Omar Salazar
collection DOAJ
description Abstract Context: The bottleneck on interval type-2 fuzzy logic systems is the output processing when using Centroid Type-Reduction + Defuzzification (CTR+D method). Nie and Tan proposed an approximation to CTR+D (NT method). Recently, Mendel and Liu improved the NT method (INT method). Numerical examples (due to Mendel and Liu) exhibit the NT and INT methods as good approximations to CTR+D. Method: Normalization to the unit interval of membership function domains (examples and counterexample) and variables involved in the calculations for the three methods. Examples (due to Mendel and Liu) taken from the literature. Counterexample with piecewise linear membership functions. Comparison by means of error and percentage relative error. Results: NT vs. CTR+D: Our counterexample showed an error of 0.1014 and a percentage relative error of 30.53%. This is respectively 23 and 32 times higher than the worst case obtained in the examples. INT vs. CTR+D: Our counterexample showed an error of 0.0725 and a percentage relative error of 21.83%. This is respectively 363 and 546 times higher than the worst case obtained in the examples. Conclusions: NT and INT methods are not necessarily good approximations to the CTR+D method.
first_indexed 2024-04-13T12:52:44Z
format Article
id doaj.art-257416e30226466d8ead003be40bf99e
institution Directory Open Access Journal
issn 0121-750X
2344-8393
language Spanish
last_indexed 2024-04-13T12:52:44Z
publishDate 2016-05-01
publisher Universidad Distrital Francisco José de Caldas
record_format Article
series Ingeniería
spelling doaj.art-257416e30226466d8ead003be40bf99e2022-12-22T02:46:09ZspaUniversidad Distrital Francisco José de CaldasIngeniería0121-750X2344-83932016-05-012127963Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>Omar Salazar0Juan Diego Rojas1Humberto Serrano2Universidad Disitrital Francisco Jose de CaldasUniversidad Distrital Francisco Jose de CaldasUniversidad Distrital Francisco Jose de CaldasAbstract Context: The bottleneck on interval type-2 fuzzy logic systems is the output processing when using Centroid Type-Reduction + Defuzzification (CTR+D method). Nie and Tan proposed an approximation to CTR+D (NT method). Recently, Mendel and Liu improved the NT method (INT method). Numerical examples (due to Mendel and Liu) exhibit the NT and INT methods as good approximations to CTR+D. Method: Normalization to the unit interval of membership function domains (examples and counterexample) and variables involved in the calculations for the three methods. Examples (due to Mendel and Liu) taken from the literature. Counterexample with piecewise linear membership functions. Comparison by means of error and percentage relative error. Results: NT vs. CTR+D: Our counterexample showed an error of 0.1014 and a percentage relative error of 30.53%. This is respectively 23 and 32 times higher than the worst case obtained in the examples. INT vs. CTR+D: Our counterexample showed an error of 0.0725 and a percentage relative error of 21.83%. This is respectively 363 and 546 times higher than the worst case obtained in the examples. Conclusions: NT and INT methods are not necessarily good approximations to the CTR+D method.http://revistas.udistrital.edu.co/ojs/index.php/reving/article/view/9370Type-2 fuzzy logic systemtype-2fuzzy setcentroiddefuzzificationNie-Tanmethod.
spellingShingle Omar Salazar
Juan Diego Rojas
Humberto Serrano
Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>
Ingeniería
Type-2 fuzzy logic system
type-2fuzzy set
centroid
defuzzification
Nie-Tanmethod.
title Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>
title_full Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>
title_fullStr Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>
title_full_unstemmed Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>
title_short Nie-Tan Method and its Improved Version: A Counterexample<br><br><i>Método Nie-Tan y su Versión Mejorada: Un contraejemplo</i>
title_sort nie tan method and its improved version a counterexample br br i metodo nie tan y su version mejorada un contraejemplo i
topic Type-2 fuzzy logic system
type-2fuzzy set
centroid
defuzzification
Nie-Tanmethod.
url http://revistas.udistrital.edu.co/ojs/index.php/reving/article/view/9370
work_keys_str_mv AT omarsalazar nietanmethodanditsimprovedversionacounterexamplebrbrimetodonietanysuversionmejoradauncontraejemploi
AT juandiegorojas nietanmethodanditsimprovedversionacounterexamplebrbrimetodonietanysuversionmejoradauncontraejemploi
AT humbertoserrano nietanmethodanditsimprovedversionacounterexamplebrbrimetodonietanysuversionmejoradauncontraejemploi