Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods

Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabi...

Full description

Bibliographic Details
Main Authors: Felix F. Gonzalez-Navarro, Margarita Stilianova-Stoytcheva, Livier Renteria-Gutierrez, Lluís A. Belanche-Muñoz, Brenda L. Flores-Rios, Jorge E. Ibarra-Esquer
Format: Article
Language:English
Published: MDPI AG 2016-10-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/16/11/1483
Description
Summary:Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.
ISSN:1424-8220