Gap junctions in hematopoietic stroma control proliferation and differentiation of blood cell precursors

We examined gap junction communication in an in vitro model of hematopoiesis, using the murine bone marrow stroma cell line S-17, and primary cultures of murine marrow-derived blood cell precursors. S-17 cells express several connexins, the major one being connexin 43. Connexin expression and format...

Full description

Bibliographic Details
Main Authors: Bodi Estevão, Hurtado Sandra P., Carvalho Marcelo A., Borojevic Radovan, Carvalho Antônio C. Campos de
Format: Article
Language:English
Published: Academia Brasileira de Ciências 2004-01-01
Series:Anais da Academia Brasileira de Ciências
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000400009
Description
Summary:We examined gap junction communication in an in vitro model of hematopoiesis, using the murine bone marrow stroma cell line S-17, and primary cultures of murine marrow-derived blood cell precursors. S-17 cells express several connexins, the major one being connexin 43. Connexin expression and formation of functional gap junctions is modulated by stroma cell density. Transfection of S-17 cells with a vector containing connexin 43 sense or anti-sense sequences increased or decreased, respectively, connexin 43 synthesis and intercellular dye coupling. Under these conditions, modulation of gap junction-mediated communication modified the growth pattern of stroma itself, as well as the ability of the stroma to sustain hematopoiesis. Increased connexin 43 expression was associated with a delay in differentiation of blood cells, resulting in increased production of hematopoietic precursors, while decreased connexin 43 expression elicited an accelerated differentiation of myeloid blood cell precursor cells. These results suggest that connexin-mediated coupling in the stroma modulates the ratio between proliferation and differentiation of hematopoietic precursors. We therefore propose that increased gap junction communication in the stroma elicits an enhanced production of immature bone marrow cells through the delay in their terminal differentiation, inducing consequently an extended proliferation period of blood cell precursors.
ISSN:0001-3765
1678-2690