Constraining QCD transport coefficients in hadron colliders

We review the phenomenology of relativistic nuclear collisions in the light of ultra-high energy cosmic ray physics. A novel phase of quantum chromodynamics called quark-gluon plasma is expected to appear in nuclear collisions at high energies. The produced hot matter is found to be well-described a...

Full description

Bibliographic Details
Main Author: Monnai Akihiko
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/13/epjconf_isvhecri2018_12002.pdf
Description
Summary:We review the phenomenology of relativistic nuclear collisions in the light of ultra-high energy cosmic ray physics. A novel phase of quantum chromodynamics called quark-gluon plasma is expected to appear in nuclear collisions at high energies. The produced hot matter is found to be well-described as a relativistic fluid with small viscosity. We show that the transport coefficient can be quantitatively extracted by comparing theoretical estimations of viscous hydrodynamic models to experimental data.
ISSN:2100-014X