Protein transduction therapy into cochleae via the round window niche in guinea pigs

Cell-penetrating peptides (CPPs) are short sequences of amino acids that facilitate the penetration of conjugated cargoes across mammalian cell membranes, and as such, they may provide a safe and effective method for drug delivery to the inner ear. Simple polyarginine peptides have been shown to ind...

Full description

Bibliographic Details
Main Authors: Hiroki Takeda, Takaomi Kurioka, Taku Kaitsuka, Kazuhito Tomizawa, Takeshi Matsunobu, Farzana Hakim, Kunio Mizutari, Toru Miwa, Takao Yamada, Momoko Ise, Akihiro Shiotani, Eiji Yumoto, Ryosei Minoda
Format: Article
Language:English
Published: Elsevier 2016-01-01
Series:Molecular Therapy: Methods & Clinical Development
Online Access:http://www.sciencedirect.com/science/article/pii/S232905011730027X
Description
Summary:Cell-penetrating peptides (CPPs) are short sequences of amino acids that facilitate the penetration of conjugated cargoes across mammalian cell membranes, and as such, they may provide a safe and effective method for drug delivery to the inner ear. Simple polyarginine peptides have been shown to induce significantly higher cell penetration rates among CPPs. Herein, we show that a peptide consisting of nine arginines (“9R”) effectively delivered enhanced green fluorescent protein (EGFP) into guinea pig cochleae via the round window niche without causing any deterioration in auditory function. A second application, 24 hours after the first, prolonged the presence of EGFP. To assess the feasibility of protein transduction using 9R-CPPs via the round window, we used “X-linked inhibitor of apoptosis protein” (XIAP) bonded to a 9R peptide (XIAP-9R). XIAP-9R treatment prior to acoustic trauma significantly reduced putative hearing loss and the number of apoptotic hair cells loss in the cochleae. Thus, the topical application of molecules fused to 9R-CPPs may be a simple and promising strategy for treating inner ear diseases.
ISSN:2329-0501