Bioeffects of silver nanoparticles (AgNPs) synthesized by producer of biosurfactant Bacillus subtilis strain: in vitro cytotoxicity, antioxidant properties and metabolic activities of mammalian cells

The present study is focused on the evaluation of bioeffects of silver nanoparticles (AgNPs) synthesized by Bacillus subtilis strain I’-1a, the producer of iturin A lipopeptide biosurfactant. The following properties of biologically synthesized silver nanoparticles (bio-AgNPs) were evaluated: in vit...

Full description

Bibliographic Details
Main Authors: Joanna Małgorzata Chojniak-Gronek, Łukasz Jałowiecki, Grażyna Anna Płaza
Format: Article
Language:English
Published: Polish Academy of Sciences 2022-12-01
Series:Archives of Environmental Protection
Subjects:
Online Access:https://journals.pan.pl/Content/125242/PDF/Archives%20vol48no4pp45_52.pdf
Description
Summary:The present study is focused on the evaluation of bioeffects of silver nanoparticles (AgNPs) synthesized by Bacillus subtilis strain I’-1a, the producer of iturin A lipopeptide biosurfactant. The following properties of biologically synthesized silver nanoparticles (bio-AgNPs) were evaluated: in vitro cytotoxicity, antioxidant properties, and metabolic activities of mammalian cells. As a control, chemically synthesized silver nanoparticles (chem-AgNPs) were used. In vitro, antioxidant activity of bio-AgNPs showed a significant effect on the scavenging of free radicals. Bio-AgNPs can be potent natural antioxidants and can be essential for health preservation against oxidative stress-related degenerative diseases, such as cancer. The cell viability of human skin fibroblasts NHDF was remarkably inhibited in the presence of both AgNPs. However, bio-AgNPs were more active than chem-AgNPs. In our experiment, microarrays PM-M1–PM-M4 were used to evaluate the growth of NHDF fibroblast cells in the presence of bio-AgNPs and chem-AgNPs. The NHDF fibroblast cells were more active in the presence of bio-AgNPs than in chem-AgNPs. Probably, the presence of biosurfactant produced by Bacillus subtilis I’-1a significantly increased the stability of biogenic AgNPs and enhanced their biological activities and specific interaction with human DNA. Furthermore, the evaluated biological activities were enhanced for the biosurfactant-based AgNPs.
ISSN:2083-4772
2083-4810