An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
<p>Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km <span class="inline-formula">×</span> 3....
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-11-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/7297/2021/amt-14-7297-2021.pdf |
_version_ | 1818932738718171136 |
---|---|
author | S. Liu S. Liu P. Valks G. Pinardi J. Xu J. Xu K. L. Chan A. Argyrouli A. Argyrouli R. Lutz S. Beirle E. Khorsandi F. Baier V. Huijnen A. Bais S. Donner S. Dörner M. Gratsea F. Hendrick D. Karagkiozidis K. Lange A. J. M. Piters J. Remmers A. Richter M. Van Roozendael T. Wagner M. Wenig D. G. Loyola |
author_facet | S. Liu S. Liu P. Valks G. Pinardi J. Xu J. Xu K. L. Chan A. Argyrouli A. Argyrouli R. Lutz S. Beirle E. Khorsandi F. Baier V. Huijnen A. Bais S. Donner S. Dörner M. Gratsea F. Hendrick D. Karagkiozidis K. Lange A. J. M. Piters J. Remmers A. Richter M. Van Roozendael T. Wagner M. Wenig D. G. Loyola |
author_sort | S. Liu |
collection | DOAJ |
description | <p>Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km <span class="inline-formula">×</span> 3.5 km (7 km <span class="inline-formula">×</span> 3.5 km before 6 August 2019). The DLR nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> retrieval algorithm from TROPOMI measurements over Europe is presented.
The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric <span class="inline-formula">NO<sub>2</sub></span> on the viewing geometry by up to <span class="inline-formula">2×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span>. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is <span class="inline-formula">3.5×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span> in the case of significant tropospheric sources. Applied to actual measurements, the smooth variation of stratospheric <span class="inline-formula">NO<sub>2</sub></span> at low latitudes is conserved, and stronger stratospheric variation at higher latitudes is captured.</p>
<p><span id="page7298"/>For AMF calculation, the climatological surface albedo data are replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori <span class="inline-formula">NO<sub>2</sub></span> profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a Clouds-As-Layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the Clouds-As-Reflecting-Boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors.</p>
<p>For the error analysis, the tropospheric AMF uncertainty, which is the largest source of <span class="inline-formula">NO<sub>2</sub></span> uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric <span class="inline-formula">NO<sub>2</sub></span> column in the 30 %–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the new DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> data show good correlations for nine European urban/suburban stations, with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from <span class="inline-formula">−</span>55.3 % to <span class="inline-formula">−</span>34.7 % on average in comparison with the DLR reference retrieval. When the satellite averaging kernels are used to remove the contribution of a priori profile shape, the relative difference decreases further to <span class="inline-formula">∼</span> <span class="inline-formula">−</span>20 %.</p> |
first_indexed | 2024-12-20T04:37:16Z |
format | Article |
id | doaj.art-25c54614be3d4a66bf7603d6aac8a46e |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-12-20T04:37:16Z |
publishDate | 2021-11-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-25c54614be3d4a66bf7603d6aac8a46e2022-12-21T19:53:14ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-11-01147297732710.5194/amt-14-7297-2021An improved TROPOMI tropospheric NO<sub>2</sub> research product over EuropeS. Liu0S. Liu1P. Valks2G. Pinardi3J. Xu4J. Xu5K. L. Chan6A. Argyrouli7A. Argyrouli8R. Lutz9S. Beirle10E. Khorsandi11F. Baier12V. Huijnen13A. Bais14S. Donner15S. Dörner16M. Gratsea17F. Hendrick18D. Karagkiozidis19K. Lange20A. J. M. Piters21J. Remmers22A. Richter23M. Van Roozendael24T. Wagner25M. Wenig26D. G. Loyola27Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, Germanynow at: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, ChinaDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyNational Space Science Center, Chinese Academy of Sciences, Beijing, ChinaDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyTechnical University of Munich (TUM), Department of Civil, Geo and Environmental Engineering, Chair of Remote Sensing Technology, Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, GermanyRoyal Netherlands Meteorological Institute (KNMI), De Bilt, the NetherlandsLaboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, GreeceMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyInstitute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, GreeceRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumLaboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, GreeceInstitute of Environmental Physics (IUP-UB), University of Bremen, Bremen, GermanyRoyal Netherlands Meteorological Institute (KNMI), De Bilt, the NetherlandsMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyInstitute of Environmental Physics (IUP-UB), University of Bremen, Bremen, GermanyRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyMeteorological Institute (MIM), Ludwig-Maximilians-Universität München (LMU), Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, Germany<p>Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km <span class="inline-formula">×</span> 3.5 km (7 km <span class="inline-formula">×</span> 3.5 km before 6 August 2019). The DLR nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric <span class="inline-formula">NO<sub>2</sub></span> on the viewing geometry by up to <span class="inline-formula">2×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span>. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is <span class="inline-formula">3.5×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span> in the case of significant tropospheric sources. Applied to actual measurements, the smooth variation of stratospheric <span class="inline-formula">NO<sub>2</sub></span> at low latitudes is conserved, and stronger stratospheric variation at higher latitudes is captured.</p> <p><span id="page7298"/>For AMF calculation, the climatological surface albedo data are replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori <span class="inline-formula">NO<sub>2</sub></span> profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a Clouds-As-Layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the Clouds-As-Reflecting-Boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors.</p> <p>For the error analysis, the tropospheric AMF uncertainty, which is the largest source of <span class="inline-formula">NO<sub>2</sub></span> uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric <span class="inline-formula">NO<sub>2</sub></span> column in the 30 %–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the new DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> data show good correlations for nine European urban/suburban stations, with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from <span class="inline-formula">−</span>55.3 % to <span class="inline-formula">−</span>34.7 % on average in comparison with the DLR reference retrieval. When the satellite averaging kernels are used to remove the contribution of a priori profile shape, the relative difference decreases further to <span class="inline-formula">∼</span> <span class="inline-formula">−</span>20 %.</p>https://amt.copernicus.org/articles/14/7297/2021/amt-14-7297-2021.pdf |
spellingShingle | S. Liu S. Liu P. Valks G. Pinardi J. Xu J. Xu K. L. Chan A. Argyrouli A. Argyrouli R. Lutz S. Beirle E. Khorsandi F. Baier V. Huijnen A. Bais S. Donner S. Dörner M. Gratsea F. Hendrick D. Karagkiozidis K. Lange A. J. M. Piters J. Remmers A. Richter M. Van Roozendael T. Wagner M. Wenig D. G. Loyola An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe Atmospheric Measurement Techniques |
title | An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe |
title_full | An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe |
title_fullStr | An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe |
title_full_unstemmed | An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe |
title_short | An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe |
title_sort | improved tropomi tropospheric no sub 2 sub research product over europe |
url | https://amt.copernicus.org/articles/14/7297/2021/amt-14-7297-2021.pdf |
work_keys_str_mv | AT sliu animprovedtropomitroposphericnosub2subresearchproductovereurope AT sliu animprovedtropomitroposphericnosub2subresearchproductovereurope AT pvalks animprovedtropomitroposphericnosub2subresearchproductovereurope AT gpinardi animprovedtropomitroposphericnosub2subresearchproductovereurope AT jxu animprovedtropomitroposphericnosub2subresearchproductovereurope AT jxu animprovedtropomitroposphericnosub2subresearchproductovereurope AT klchan animprovedtropomitroposphericnosub2subresearchproductovereurope AT aargyrouli animprovedtropomitroposphericnosub2subresearchproductovereurope AT aargyrouli animprovedtropomitroposphericnosub2subresearchproductovereurope AT rlutz animprovedtropomitroposphericnosub2subresearchproductovereurope AT sbeirle animprovedtropomitroposphericnosub2subresearchproductovereurope AT ekhorsandi animprovedtropomitroposphericnosub2subresearchproductovereurope AT fbaier animprovedtropomitroposphericnosub2subresearchproductovereurope AT vhuijnen animprovedtropomitroposphericnosub2subresearchproductovereurope AT abais animprovedtropomitroposphericnosub2subresearchproductovereurope AT sdonner animprovedtropomitroposphericnosub2subresearchproductovereurope AT sdorner animprovedtropomitroposphericnosub2subresearchproductovereurope AT mgratsea animprovedtropomitroposphericnosub2subresearchproductovereurope AT fhendrick animprovedtropomitroposphericnosub2subresearchproductovereurope AT dkaragkiozidis animprovedtropomitroposphericnosub2subresearchproductovereurope AT klange animprovedtropomitroposphericnosub2subresearchproductovereurope AT ajmpiters animprovedtropomitroposphericnosub2subresearchproductovereurope AT jremmers animprovedtropomitroposphericnosub2subresearchproductovereurope AT arichter animprovedtropomitroposphericnosub2subresearchproductovereurope AT mvanroozendael animprovedtropomitroposphericnosub2subresearchproductovereurope AT twagner animprovedtropomitroposphericnosub2subresearchproductovereurope AT mwenig animprovedtropomitroposphericnosub2subresearchproductovereurope AT dgloyola animprovedtropomitroposphericnosub2subresearchproductovereurope AT sliu improvedtropomitroposphericnosub2subresearchproductovereurope AT sliu improvedtropomitroposphericnosub2subresearchproductovereurope AT pvalks improvedtropomitroposphericnosub2subresearchproductovereurope AT gpinardi improvedtropomitroposphericnosub2subresearchproductovereurope AT jxu improvedtropomitroposphericnosub2subresearchproductovereurope AT jxu improvedtropomitroposphericnosub2subresearchproductovereurope AT klchan improvedtropomitroposphericnosub2subresearchproductovereurope AT aargyrouli improvedtropomitroposphericnosub2subresearchproductovereurope AT aargyrouli improvedtropomitroposphericnosub2subresearchproductovereurope AT rlutz improvedtropomitroposphericnosub2subresearchproductovereurope AT sbeirle improvedtropomitroposphericnosub2subresearchproductovereurope AT ekhorsandi improvedtropomitroposphericnosub2subresearchproductovereurope AT fbaier improvedtropomitroposphericnosub2subresearchproductovereurope AT vhuijnen improvedtropomitroposphericnosub2subresearchproductovereurope AT abais improvedtropomitroposphericnosub2subresearchproductovereurope AT sdonner improvedtropomitroposphericnosub2subresearchproductovereurope AT sdorner improvedtropomitroposphericnosub2subresearchproductovereurope AT mgratsea improvedtropomitroposphericnosub2subresearchproductovereurope AT fhendrick improvedtropomitroposphericnosub2subresearchproductovereurope AT dkaragkiozidis improvedtropomitroposphericnosub2subresearchproductovereurope AT klange improvedtropomitroposphericnosub2subresearchproductovereurope AT ajmpiters improvedtropomitroposphericnosub2subresearchproductovereurope AT jremmers improvedtropomitroposphericnosub2subresearchproductovereurope AT arichter improvedtropomitroposphericnosub2subresearchproductovereurope AT mvanroozendael improvedtropomitroposphericnosub2subresearchproductovereurope AT twagner improvedtropomitroposphericnosub2subresearchproductovereurope AT mwenig improvedtropomitroposphericnosub2subresearchproductovereurope AT dgloyola improvedtropomitroposphericnosub2subresearchproductovereurope |