An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe

<p>Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km <span class="inline-formula">×</span> 3....

Full description

Bibliographic Details
Main Authors: S. Liu, P. Valks, G. Pinardi, J. Xu, K. L. Chan, A. Argyrouli, R. Lutz, S. Beirle, E. Khorsandi, F. Baier, V. Huijnen, A. Bais, S. Donner, S. Dörner, M. Gratsea, F. Hendrick, D. Karagkiozidis, K. Lange, A. J. M. Piters, J. Remmers, A. Richter, M. Van Roozendael, T. Wagner, M. Wenig, D. G. Loyola
Format: Article
Language:English
Published: Copernicus Publications 2021-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/7297/2021/amt-14-7297-2021.pdf
_version_ 1818932738718171136
author S. Liu
S. Liu
P. Valks
G. Pinardi
J. Xu
J. Xu
K. L. Chan
A. Argyrouli
A. Argyrouli
R. Lutz
S. Beirle
E. Khorsandi
F. Baier
V. Huijnen
A. Bais
S. Donner
S. Dörner
M. Gratsea
F. Hendrick
D. Karagkiozidis
K. Lange
A. J. M. Piters
J. Remmers
A. Richter
M. Van Roozendael
T. Wagner
M. Wenig
D. G. Loyola
author_facet S. Liu
S. Liu
P. Valks
G. Pinardi
J. Xu
J. Xu
K. L. Chan
A. Argyrouli
A. Argyrouli
R. Lutz
S. Beirle
E. Khorsandi
F. Baier
V. Huijnen
A. Bais
S. Donner
S. Dörner
M. Gratsea
F. Hendrick
D. Karagkiozidis
K. Lange
A. J. M. Piters
J. Remmers
A. Richter
M. Van Roozendael
T. Wagner
M. Wenig
D. G. Loyola
author_sort S. Liu
collection DOAJ
description <p>Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km <span class="inline-formula">×</span> 3.5 km (7 km <span class="inline-formula">×</span> 3.5 km before 6 August 2019). The DLR nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric <span class="inline-formula">NO<sub>2</sub></span> on the viewing geometry by up to <span class="inline-formula">2×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span>. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is <span class="inline-formula">3.5×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span> in the case of significant tropospheric sources. Applied to actual measurements, the smooth variation of stratospheric <span class="inline-formula">NO<sub>2</sub></span> at low latitudes is conserved, and stronger stratospheric variation at higher latitudes is captured.</p> <p><span id="page7298"/>For AMF calculation, the climatological surface albedo data are replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori <span class="inline-formula">NO<sub>2</sub></span> profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a Clouds-As-Layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the Clouds-As-Reflecting-Boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors.</p> <p>For the error analysis, the tropospheric AMF uncertainty, which is the largest source of <span class="inline-formula">NO<sub>2</sub></span> uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric <span class="inline-formula">NO<sub>2</sub></span> column in the 30 %–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the new DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> data show good correlations for nine European urban/suburban stations, with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from <span class="inline-formula">−</span>55.3 % to <span class="inline-formula">−</span>34.7 % on average in comparison with the DLR reference retrieval. When the satellite averaging kernels are used to remove the contribution of a priori profile shape, the relative difference decreases further to <span class="inline-formula">∼</span> <span class="inline-formula">−</span>20 %.</p>
first_indexed 2024-12-20T04:37:16Z
format Article
id doaj.art-25c54614be3d4a66bf7603d6aac8a46e
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-20T04:37:16Z
publishDate 2021-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-25c54614be3d4a66bf7603d6aac8a46e2022-12-21T19:53:14ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-11-01147297732710.5194/amt-14-7297-2021An improved TROPOMI tropospheric NO<sub>2</sub> research product over EuropeS. Liu0S. Liu1P. Valks2G. Pinardi3J. Xu4J. Xu5K. L. Chan6A. Argyrouli7A. Argyrouli8R. Lutz9S. Beirle10E. Khorsandi11F. Baier12V. Huijnen13A. Bais14S. Donner15S. Dörner16M. Gratsea17F. Hendrick18D. Karagkiozidis19K. Lange20A. J. M. Piters21J. Remmers22A. Richter23M. Van Roozendael24T. Wagner25M. Wenig26D. G. Loyola27Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, Germanynow at: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, ChinaDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyNational Space Science Center, Chinese Academy of Sciences, Beijing, ChinaDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyTechnical University of Munich (TUM), Department of Civil, Geo and Environmental Engineering, Chair of Remote Sensing Technology, Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, GermanyMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, GermanyRoyal Netherlands Meteorological Institute (KNMI), De Bilt, the NetherlandsLaboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, GreeceMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyInstitute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, GreeceRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumLaboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, GreeceInstitute of Environmental Physics (IUP-UB), University of Bremen, Bremen, GermanyRoyal Netherlands Meteorological Institute (KNMI), De Bilt, the NetherlandsMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyInstitute of Environmental Physics (IUP-UB), University of Bremen, Bremen, GermanyRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumMax Planck Institute for Chemistry (MPI-C), Mainz, GermanyMeteorological Institute (MIM), Ludwig-Maximilians-Universität München (LMU), Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, Germany<p>Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km <span class="inline-formula">×</span> 3.5 km (7 km <span class="inline-formula">×</span> 3.5 km before 6 August 2019). The DLR nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric <span class="inline-formula">NO<sub>2</sub></span> on the viewing geometry by up to <span class="inline-formula">2×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span>. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is <span class="inline-formula">3.5×10<sup>14</sup></span> molec./cm<span class="inline-formula"><sup>2</sup></span> in the case of significant tropospheric sources. Applied to actual measurements, the smooth variation of stratospheric <span class="inline-formula">NO<sub>2</sub></span> at low latitudes is conserved, and stronger stratospheric variation at higher latitudes is captured.</p> <p><span id="page7298"/>For AMF calculation, the climatological surface albedo data are replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori <span class="inline-formula">NO<sub>2</sub></span> profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a Clouds-As-Layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the Clouds-As-Reflecting-Boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors.</p> <p>For the error analysis, the tropospheric AMF uncertainty, which is the largest source of <span class="inline-formula">NO<sub>2</sub></span> uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric <span class="inline-formula">NO<sub>2</sub></span> column in the 30 %–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the new DLR tropospheric <span class="inline-formula">NO<sub>2</sub></span> data show good correlations for nine European urban/suburban stations, with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from <span class="inline-formula">−</span>55.3 % to <span class="inline-formula">−</span>34.7 % on average in comparison with the DLR reference retrieval. When the satellite averaging kernels are used to remove the contribution of a priori profile shape, the relative difference decreases further to <span class="inline-formula">∼</span> <span class="inline-formula">−</span>20 %.</p>https://amt.copernicus.org/articles/14/7297/2021/amt-14-7297-2021.pdf
spellingShingle S. Liu
S. Liu
P. Valks
G. Pinardi
J. Xu
J. Xu
K. L. Chan
A. Argyrouli
A. Argyrouli
R. Lutz
S. Beirle
E. Khorsandi
F. Baier
V. Huijnen
A. Bais
S. Donner
S. Dörner
M. Gratsea
F. Hendrick
D. Karagkiozidis
K. Lange
A. J. M. Piters
J. Remmers
A. Richter
M. Van Roozendael
T. Wagner
M. Wenig
D. G. Loyola
An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
Atmospheric Measurement Techniques
title An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
title_full An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
title_fullStr An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
title_full_unstemmed An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
title_short An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
title_sort improved tropomi tropospheric no sub 2 sub research product over europe
url https://amt.copernicus.org/articles/14/7297/2021/amt-14-7297-2021.pdf
work_keys_str_mv AT sliu animprovedtropomitroposphericnosub2subresearchproductovereurope
AT sliu animprovedtropomitroposphericnosub2subresearchproductovereurope
AT pvalks animprovedtropomitroposphericnosub2subresearchproductovereurope
AT gpinardi animprovedtropomitroposphericnosub2subresearchproductovereurope
AT jxu animprovedtropomitroposphericnosub2subresearchproductovereurope
AT jxu animprovedtropomitroposphericnosub2subresearchproductovereurope
AT klchan animprovedtropomitroposphericnosub2subresearchproductovereurope
AT aargyrouli animprovedtropomitroposphericnosub2subresearchproductovereurope
AT aargyrouli animprovedtropomitroposphericnosub2subresearchproductovereurope
AT rlutz animprovedtropomitroposphericnosub2subresearchproductovereurope
AT sbeirle animprovedtropomitroposphericnosub2subresearchproductovereurope
AT ekhorsandi animprovedtropomitroposphericnosub2subresearchproductovereurope
AT fbaier animprovedtropomitroposphericnosub2subresearchproductovereurope
AT vhuijnen animprovedtropomitroposphericnosub2subresearchproductovereurope
AT abais animprovedtropomitroposphericnosub2subresearchproductovereurope
AT sdonner animprovedtropomitroposphericnosub2subresearchproductovereurope
AT sdorner animprovedtropomitroposphericnosub2subresearchproductovereurope
AT mgratsea animprovedtropomitroposphericnosub2subresearchproductovereurope
AT fhendrick animprovedtropomitroposphericnosub2subresearchproductovereurope
AT dkaragkiozidis animprovedtropomitroposphericnosub2subresearchproductovereurope
AT klange animprovedtropomitroposphericnosub2subresearchproductovereurope
AT ajmpiters animprovedtropomitroposphericnosub2subresearchproductovereurope
AT jremmers animprovedtropomitroposphericnosub2subresearchproductovereurope
AT arichter animprovedtropomitroposphericnosub2subresearchproductovereurope
AT mvanroozendael animprovedtropomitroposphericnosub2subresearchproductovereurope
AT twagner animprovedtropomitroposphericnosub2subresearchproductovereurope
AT mwenig animprovedtropomitroposphericnosub2subresearchproductovereurope
AT dgloyola animprovedtropomitroposphericnosub2subresearchproductovereurope
AT sliu improvedtropomitroposphericnosub2subresearchproductovereurope
AT sliu improvedtropomitroposphericnosub2subresearchproductovereurope
AT pvalks improvedtropomitroposphericnosub2subresearchproductovereurope
AT gpinardi improvedtropomitroposphericnosub2subresearchproductovereurope
AT jxu improvedtropomitroposphericnosub2subresearchproductovereurope
AT jxu improvedtropomitroposphericnosub2subresearchproductovereurope
AT klchan improvedtropomitroposphericnosub2subresearchproductovereurope
AT aargyrouli improvedtropomitroposphericnosub2subresearchproductovereurope
AT aargyrouli improvedtropomitroposphericnosub2subresearchproductovereurope
AT rlutz improvedtropomitroposphericnosub2subresearchproductovereurope
AT sbeirle improvedtropomitroposphericnosub2subresearchproductovereurope
AT ekhorsandi improvedtropomitroposphericnosub2subresearchproductovereurope
AT fbaier improvedtropomitroposphericnosub2subresearchproductovereurope
AT vhuijnen improvedtropomitroposphericnosub2subresearchproductovereurope
AT abais improvedtropomitroposphericnosub2subresearchproductovereurope
AT sdonner improvedtropomitroposphericnosub2subresearchproductovereurope
AT sdorner improvedtropomitroposphericnosub2subresearchproductovereurope
AT mgratsea improvedtropomitroposphericnosub2subresearchproductovereurope
AT fhendrick improvedtropomitroposphericnosub2subresearchproductovereurope
AT dkaragkiozidis improvedtropomitroposphericnosub2subresearchproductovereurope
AT klange improvedtropomitroposphericnosub2subresearchproductovereurope
AT ajmpiters improvedtropomitroposphericnosub2subresearchproductovereurope
AT jremmers improvedtropomitroposphericnosub2subresearchproductovereurope
AT arichter improvedtropomitroposphericnosub2subresearchproductovereurope
AT mvanroozendael improvedtropomitroposphericnosub2subresearchproductovereurope
AT twagner improvedtropomitroposphericnosub2subresearchproductovereurope
AT mwenig improvedtropomitroposphericnosub2subresearchproductovereurope
AT dgloyola improvedtropomitroposphericnosub2subresearchproductovereurope