Cálculo de series armónicas de Riemann con exponente par
La llamada función Zeta de Riemann fue introducida por Euler mediante la definición , que se trata de una serie convergente en la que z es un número complejo con parte real mayor que uno. El presente trabajo va encaminado a presentar una fórmula recurrente para el cálculo de series . Es conocido...
Main Authors: | Jorge Morales Paredes, Weimar Muñoz Villate, Solón E. Losada Herrera |
---|---|
Format: | Article |
Language: | English |
Published: |
Editorial Neogranadina
2008-01-01
|
Series: | Ciencia e Ingeniería Neogranadina |
Subjects: | |
Online Access: | http://www.redalyc.org/articulo.oa?id=91118107 |
Similar Items
-
Cálculo de series armónicas de Riemann con exponente par
by: Jorge Morales Paredes, et al.
Published: (2008-06-01) -
Fracción, razón y número racional en procesos de aproximación para la introducción del cálculo con estudiantes de grado once
by: Jairo Abdel Torres Medina
Published: (2014-10-01) -
Dotando de sentido el algoritmo de la división a partir de una trayectoria de aprendizaje que parte de lo concreto para llegar a lo simbólico
by: Carlos Alberto Díez Fonnegra, et al.
Published: (2014-10-01) -
LA CUENTA LARGA DEL CALENDARIO MAYA Y SU NOTACIÓN
by: Leonel Morales Aldana
Published: (2020-11-01) -
Los números primos. Un largo camino al infinito
by: Javier Rodrigo Hitos
Published: (2011-10-01)