Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications

Drug resistance threatening humans may be linked with antimicrobial and anthelmintic resistance in other species, especially among farm animals and, more in general, in the entire environment. From this perspective, Green Veterinary Pharmacology was proven successful for the control of parasites in...

Full description

Bibliographic Details
Main Authors: Cristian Piras, Bruno Tilocca, Fabio Castagna, Paola Roncada, Domenico Britti, Ernesto Palma
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Antibiotics
Subjects:
Online Access:https://www.mdpi.com/2079-6382/11/7/919
Description
Summary:Drug resistance threatening humans may be linked with antimicrobial and anthelmintic resistance in other species, especially among farm animals and, more in general, in the entire environment. From this perspective, Green Veterinary Pharmacology was proven successful for the control of parasites in small ruminants and for the control of other pests such as varroa in bee farming. As in anthelmintic resistance, antimicrobial resistance (AMR) represents one of the major challenges against the successful treatment of infectious diseases, and antimicrobials use in agriculture contributes to the spread of more AMR bacterial phenotypes, genes, and proteins. With this systematic review, we list Italian plants with documented antimicrobial activity against possible pathogenic microbes. Methods: The literature search included all the manuscripts published since 1990 in PubMed, Web of Science, and Scopus using the keywords (i) “antimicrobial, plants, Italy”; (ii) “antibacterial, plant, Italy”; (iii) “essential oil, antibacterial, Italy”; (iv) “essential oil, antimicrobial, Italy”; (v) “methanol extract, antibacterial, Italy”; (vi) “methanol extract, antimicrobial, Italy”. Results: In total, 105 manuscripts that documented the inhibitory effect of plants growing in Italy against bacteria were included. One hundred thirty-five plants were recorded as effective against Gram+ bacteria, and 88 against Gram−. This will provide a ready-to-use comprehensive tool to be further tested against the indicated list of pathogens and will suggest new alternative strategies against bacterial pathogens to be employed in Green Veterinary Pharmacology applications.
ISSN:2079-6382