On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach

The present study concerns the modeling of the thermal behavior of a porous longitudinal fin under fully wetted conditions with linear, quadratic, and exponential thermal conductivities surrounded by environments that are convective, conductive, and radiative. Porous fins are widely used in various...

Full description

Bibliographic Details
Main Authors: Hosam Alhakami, Naveed Ahmad Khan, Muhammad Sulaiman, Wajdi Alhakami, Abdullah Baz
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/9/1280
_version_ 1797488630865854464
author Hosam Alhakami
Naveed Ahmad Khan
Muhammad Sulaiman
Wajdi Alhakami
Abdullah Baz
author_facet Hosam Alhakami
Naveed Ahmad Khan
Muhammad Sulaiman
Wajdi Alhakami
Abdullah Baz
author_sort Hosam Alhakami
collection DOAJ
description The present study concerns the modeling of the thermal behavior of a porous longitudinal fin under fully wetted conditions with linear, quadratic, and exponential thermal conductivities surrounded by environments that are convective, conductive, and radiative. Porous fins are widely used in various engineering and everyday life applications. The Darcy model was used to formulate the governing non-linear singular differential equation for the heat transfer phenomenon in the fin. The universal approximation power of multilayer perceptron artificial neural networks (ANN) was applied to establish a model of approximate solutions for the singular non-linear boundary value problem. The optimization strategy of a sports-inspired meta-heuristic paradigm, the Tiki-Taka algorithm (TTA) with sequential quadratic programming (SQP), was utilized to determine the thermal performance and the effective use of fins for diverse values of physical parameters, such as parameter for the moist porous medium, dimensionless ambient temperature, radiation coefficient, power index, in-homogeneity index, convection coefficient, and dimensionless temperature. The results of the designed ANN-TTA-SQP algorithm were validated by comparison with state-of-the-art techniques, including the whale optimization algorithm (WOA), cuckoo search algorithm (CSA), grey wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, and machine learning algorithms. The percentage of absolute errors and the mean square error in the solutions of the proposed technique were found to lie between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></semantics></math></inline-formula>, respectively. A comprehensive study of graphs, statistics of the solutions, and errors demonstrated that the proposed scheme’s results were accurate, stable, and reliable. It was concluded that the pace at which heat is transferred from the surface of the fin to the surrounding environment increases in proportion to the degree to which the wet porosity parameter is increased. At the same time, inverse behavior was observed for increase in the power index. The results obtained may support the structural design of thermally effective cooling methods for various electronic consumer devices.
first_indexed 2024-03-10T00:05:02Z
format Article
id doaj.art-25db7522d7324d11b3e03faa353d256e
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T00:05:02Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-25db7522d7324d11b3e03faa353d256e2023-11-23T16:09:00ZengMDPI AGEntropy1099-43002022-09-01249128010.3390/e24091280On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning ApproachHosam Alhakami0Naveed Ahmad Khan1Muhammad Sulaiman2Wajdi Alhakami3Abdullah Baz4Department of Computer Science, College of Computer and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi ArabiaDepartment of Mathematics, Abdul Wali Khan University, Mardan 23200, PakistanDepartment of Mathematics, Abdul Wali Khan University, Mardan 23200, PakistanDepartment of Information Technology, College of Computers and Information Technology, Taif University, Taif 26571, Saudi ArabiaDepartment of Computer Engineering, College of Computer and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi ArabiaThe present study concerns the modeling of the thermal behavior of a porous longitudinal fin under fully wetted conditions with linear, quadratic, and exponential thermal conductivities surrounded by environments that are convective, conductive, and radiative. Porous fins are widely used in various engineering and everyday life applications. The Darcy model was used to formulate the governing non-linear singular differential equation for the heat transfer phenomenon in the fin. The universal approximation power of multilayer perceptron artificial neural networks (ANN) was applied to establish a model of approximate solutions for the singular non-linear boundary value problem. The optimization strategy of a sports-inspired meta-heuristic paradigm, the Tiki-Taka algorithm (TTA) with sequential quadratic programming (SQP), was utilized to determine the thermal performance and the effective use of fins for diverse values of physical parameters, such as parameter for the moist porous medium, dimensionless ambient temperature, radiation coefficient, power index, in-homogeneity index, convection coefficient, and dimensionless temperature. The results of the designed ANN-TTA-SQP algorithm were validated by comparison with state-of-the-art techniques, including the whale optimization algorithm (WOA), cuckoo search algorithm (CSA), grey wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, and machine learning algorithms. The percentage of absolute errors and the mean square error in the solutions of the proposed technique were found to lie between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></semantics></math></inline-formula>, respectively. A comprehensive study of graphs, statistics of the solutions, and errors demonstrated that the proposed scheme’s results were accurate, stable, and reliable. It was concluded that the pace at which heat is transferred from the surface of the fin to the surrounding environment increases in proportion to the degree to which the wet porosity parameter is increased. At the same time, inverse behavior was observed for increase in the power index. The results obtained may support the structural design of thermally effective cooling methods for various electronic consumer devices.https://www.mdpi.com/1099-4300/24/9/1280wet porous finfunctionally graded materialsthermal analysismeta-heuristicsmachine learning techniques
spellingShingle Hosam Alhakami
Naveed Ahmad Khan
Muhammad Sulaiman
Wajdi Alhakami
Abdullah Baz
On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach
Entropy
wet porous fin
functionally graded materials
thermal analysis
meta-heuristics
machine learning techniques
title On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach
title_full On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach
title_fullStr On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach
title_full_unstemmed On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach
title_short On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach
title_sort on the computational study of a fully wetted longitudinal porous heat exchanger using a machine learning approach
topic wet porous fin
functionally graded materials
thermal analysis
meta-heuristics
machine learning techniques
url https://www.mdpi.com/1099-4300/24/9/1280
work_keys_str_mv AT hosamalhakami onthecomputationalstudyofafullywettedlongitudinalporousheatexchangerusingamachinelearningapproach
AT naveedahmadkhan onthecomputationalstudyofafullywettedlongitudinalporousheatexchangerusingamachinelearningapproach
AT muhammadsulaiman onthecomputationalstudyofafullywettedlongitudinalporousheatexchangerusingamachinelearningapproach
AT wajdialhakami onthecomputationalstudyofafullywettedlongitudinalporousheatexchangerusingamachinelearningapproach
AT abdullahbaz onthecomputationalstudyofafullywettedlongitudinalporousheatexchangerusingamachinelearningapproach