Surface ocean microbiota determine cloud precursors

Abstract One pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray flux...

Full description

Bibliographic Details
Main Authors: Karine Sellegri, Alessia Nicosia, Evelyn Freney, Julia Uitz, Melilotus Thyssen, Gérald Grégori, Anja Engel, Birthe Zäncker, Nils Haëntjens, Sébastien Mas, David Picard, Alexia Saint-Macary, Maija Peltola, Clémence Rose, Jonathan Trueblood, Dominique Lefevre, Barbara D’Anna, Karine Desboeufs, Nicholas Meskhidze, Cécile Guieu, Cliff S. Law
Format: Article
Language:English
Published: Nature Portfolio 2021-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-020-78097-5
Description
Summary:Abstract One pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray fluxes remains poorly characterized. Here we show a consistent significant relationship between seawater nanophytoplankton cell abundances and sea-spray derived Cloud Condensation Nuclei (CCN) number fluxes, generated using water from three different oceanic regions. This sensitivity of CCN number fluxes to ocean biology is currently unaccounted for in climate models yet our measurements indicate that it influences fluxes by more than one order of magnitude over the range of phytoplankton investigated.
ISSN:2045-2322