Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin
The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed cou...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2011-09-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | http://www.hydrol-earth-syst-sci.net/15/2913/2011/hess-15-2913-2011.pdf |
_version_ | 1818999814060244992 |
---|---|
author | E. H. Sutanudjaja L. P. H. van Beek S. M. de Jong F. C. van Geer M. F. P. Bierkens |
author_facet | E. H. Sutanudjaja L. P. H. van Beek S. M. de Jong F. C. van Geer M. F. P. Bierkens |
author_sort | E. H. Sutanudjaja |
collection | DOAJ |
description | The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution) to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed). The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale. |
first_indexed | 2024-12-20T22:23:24Z |
format | Article |
id | doaj.art-25e70e43489f4657841c3339db867a4d |
institution | Directory Open Access Journal |
issn | 1027-5606 1607-7938 |
language | English |
last_indexed | 2024-12-20T22:23:24Z |
publishDate | 2011-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Hydrology and Earth System Sciences |
spelling | doaj.art-25e70e43489f4657841c3339db867a4d2022-12-21T19:24:53ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382011-09-011592913293510.5194/hess-15-2913-2011Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basinE. H. SutanudjajaL. P. H. van BeekS. M. de JongF. C. van GeerM. F. P. BierkensThe current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution) to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed). The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.http://www.hydrol-earth-syst-sci.net/15/2913/2011/hess-15-2913-2011.pdf |
spellingShingle | E. H. Sutanudjaja L. P. H. van Beek S. M. de Jong F. C. van Geer M. F. P. Bierkens Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin Hydrology and Earth System Sciences |
title | Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin |
title_full | Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin |
title_fullStr | Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin |
title_full_unstemmed | Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin |
title_short | Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin |
title_sort | large scale groundwater modeling using global datasets a test case for the rhine meuse basin |
url | http://www.hydrol-earth-syst-sci.net/15/2913/2011/hess-15-2913-2011.pdf |
work_keys_str_mv | AT ehsutanudjaja largescalegroundwatermodelingusingglobaldatasetsatestcasefortherhinemeusebasin AT lphvanbeek largescalegroundwatermodelingusingglobaldatasetsatestcasefortherhinemeusebasin AT smdejong largescalegroundwatermodelingusingglobaldatasetsatestcasefortherhinemeusebasin AT fcvangeer largescalegroundwatermodelingusingglobaldatasetsatestcasefortherhinemeusebasin AT mfpbierkens largescalegroundwatermodelingusingglobaldatasetsatestcasefortherhinemeusebasin |