Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron Accelerator

The bremsstrahlung is an important source term in the shielding design of the electron accelerator. In order to study the characteristics of the photon source term in the 90° direction and the influence of target radius and thickness on the bremsstrahlung in the 90° direction, the Monte Carlo progra...

Full description

Bibliographic Details
Main Author: ZHAO Feng;YANG Litao;YIN Yuhao;JIANG Jun;REN Zicheng;WANG Ying
Format: Article
Language:English
Published: Editorial Board of Atomic Energy Science and Technology 2022-10-01
Series:Yuanzineng kexue jishu
Subjects:
Online Access:https://www.aest.org.cn/CN/abstract/abstract21577.shtml
_version_ 1811309414666207232
author ZHAO Feng;YANG Litao;YIN Yuhao;JIANG Jun;REN Zicheng;WANG Ying
author_facet ZHAO Feng;YANG Litao;YIN Yuhao;JIANG Jun;REN Zicheng;WANG Ying
author_sort ZHAO Feng;YANG Litao;YIN Yuhao;JIANG Jun;REN Zicheng;WANG Ying
collection DOAJ
description The bremsstrahlung is an important source term in the shielding design of the electron accelerator. In order to study the characteristics of the photon source term in the 90° direction and the influence of target radius and thickness on the bremsstrahlung in the 90° direction, the Monte Carlo program of MCNPX27 was used to calculate the radiation source term from the 15 MeV3 GeV electron beam incident on the iron target with different thicknesses and radii. The variation characteristics of radiation source items such as photon radiation dose rate and photon energy spectrum with target thickness and radius were obtained and comparatively analyzed. By comparing with the photon source term in the 0° direction and the energy deposition of cascade electron in the target, the main features of the photon source term in the 90° direction were obtained. Finally, the effects of beam power and beam intensity on radiation dose rates in the 90° and 0° directions were analyzed. The result shows that, due to the combined influence of electron energy deposition in the target and self-absorption of photons from the target, the radius and thickness of the target are expected as important factors which affect the photon source term in the 90° direction. The energy of the cascade electrons deposited in the target and the radiation dose rate in the 90° direction increases with the thickness. As the energy of the cascade electrons is completely deposited in the target, the radiation dose rate in the 90° direction will not change with the target thickness. The radiation dose rate in the 90° direction also increases with the target radius, but when the target radius is larger, the radiation dose rate in the 90° direction decreases due to the selfabsorption. Apart from that, the effect of incident electron energy on the photon source terms in the 90° direction and 0° direction is different. More than 99% of the photons in the 90° direction are below 10 MeV, and most of them are within 3 MeV. In the 90° direction, the photon energy spectrum shape has little relationship with the incident electron energy. However, the photon energy in the 0° direction can reach the incident electron energy, which is generally much larger than the photon energy in the 90° direction, and the shape of the energy spectrum is greatly affected by the incident electron. As a suggestion, the influence of the target size should be considered in the shielding design of the electron accelerator, and the design in the lateral shielding should be optimized according to the difference between the photon source term in the 90° direction and 0° direction.
first_indexed 2024-04-13T09:41:42Z
format Article
id doaj.art-25e90be03d6a4ef4ac0189bc9d8a0a98
institution Directory Open Access Journal
issn 1000-6931
language English
last_indexed 2024-04-13T09:41:42Z
publishDate 2022-10-01
publisher Editorial Board of Atomic Energy Science and Technology
record_format Article
series Yuanzineng kexue jishu
spelling doaj.art-25e90be03d6a4ef4ac0189bc9d8a0a982022-12-22T02:51:53ZengEditorial Board of Atomic Energy Science and TechnologyYuanzineng kexue jishu1000-69312022-10-01561021392145Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron AcceleratorZHAO Feng;YANG Litao;YIN Yuhao;JIANG Jun;REN Zicheng;WANG Ying 0Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215004, ChinaThe bremsstrahlung is an important source term in the shielding design of the electron accelerator. In order to study the characteristics of the photon source term in the 90° direction and the influence of target radius and thickness on the bremsstrahlung in the 90° direction, the Monte Carlo program of MCNPX27 was used to calculate the radiation source term from the 15 MeV3 GeV electron beam incident on the iron target with different thicknesses and radii. The variation characteristics of radiation source items such as photon radiation dose rate and photon energy spectrum with target thickness and radius were obtained and comparatively analyzed. By comparing with the photon source term in the 0° direction and the energy deposition of cascade electron in the target, the main features of the photon source term in the 90° direction were obtained. Finally, the effects of beam power and beam intensity on radiation dose rates in the 90° and 0° directions were analyzed. The result shows that, due to the combined influence of electron energy deposition in the target and self-absorption of photons from the target, the radius and thickness of the target are expected as important factors which affect the photon source term in the 90° direction. The energy of the cascade electrons deposited in the target and the radiation dose rate in the 90° direction increases with the thickness. As the energy of the cascade electrons is completely deposited in the target, the radiation dose rate in the 90° direction will not change with the target thickness. The radiation dose rate in the 90° direction also increases with the target radius, but when the target radius is larger, the radiation dose rate in the 90° direction decreases due to the selfabsorption. Apart from that, the effect of incident electron energy on the photon source terms in the 90° direction and 0° direction is different. More than 99% of the photons in the 90° direction are below 10 MeV, and most of them are within 3 MeV. In the 90° direction, the photon energy spectrum shape has little relationship with the incident electron energy. However, the photon energy in the 0° direction can reach the incident electron energy, which is generally much larger than the photon energy in the 90° direction, and the shape of the energy spectrum is greatly affected by the incident electron. As a suggestion, the influence of the target size should be considered in the shielding design of the electron accelerator, and the design in the lateral shielding should be optimized according to the difference between the photon source term in the 90° direction and 0° direction.https://www.aest.org.cn/CN/abstract/abstract21577.shtmlelectron acceleratorshielding designbremsstrahlungtarget sizephoton source term
spellingShingle ZHAO Feng;YANG Litao;YIN Yuhao;JIANG Jun;REN Zicheng;WANG Ying
Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron Accelerator
Yuanzineng kexue jishu
electron accelerator
shielding design
bremsstrahlung
target size
photon source term
title Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron Accelerator
title_full Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron Accelerator
title_fullStr Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron Accelerator
title_full_unstemmed Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron Accelerator
title_short Research on Photon Source Term in 90° of 15 MeV-3 GeV Electron Accelerator
title_sort research on photon source term in 90° of 15 mev 3 gev electron accelerator
topic electron accelerator
shielding design
bremsstrahlung
target size
photon source term
url https://www.aest.org.cn/CN/abstract/abstract21577.shtml
work_keys_str_mv AT zhaofengyanglitaoyinyuhaojiangjunrenzichengwangying researchonphotonsourcetermin90of15mev3gevelectronaccelerator