Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model

Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element...

Full description

Bibliographic Details
Main Authors: Qinghua Lin, Baoming Li
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2016-04-01
Series:Defence Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214914716000064
Description
Summary:Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.
ISSN:2214-9147