Existence of multiple solutions for quasilinear elliptic equations in R^N

In this article, we establish the multiplicity of positive weak solution for the quasilinear elliptic equation $$\displaylines{ -\Delta_p u+\lambda|u|^{p-2}u=f(x) |u|^{s-2 }u+h(x)|u|^{r-2}u\quad x\in \mathbb{R}^N,\cr u>0\quad x\in \mathbb{R}^N,\cr u\in W^{1,p}(\mathbb{R}^N) }$$ We sho...

Full description

Bibliographic Details
Main Authors: Honghui Yin, Zuodong Yang
Format: Article
Language:English
Published: Texas State University 2014-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/17/abstr.html
Description
Summary:In this article, we establish the multiplicity of positive weak solution for the quasilinear elliptic equation $$\displaylines{ -\Delta_p u+\lambda|u|^{p-2}u=f(x) |u|^{s-2 }u+h(x)|u|^{r-2}u\quad x\in \mathbb{R}^N,\cr u>0\quad x\in \mathbb{R}^N,\cr u\in W^{1,p}(\mathbb{R}^N) }$$ We show how the shape of the graph of f affects the number of positive solutions. Our results extend the corresponding results in [21].
ISSN:1072-6691