Summary: | Summary: Transcriptomic analysis plays a key role in biomedical research. Linear dimensionality reduction methods, especially principal-component analysis (PCA), are widely used in detecting sample-to-sample heterogeneity, while recently developed non-linear methods, such as t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), can efficiently cluster heterogeneous samples in single-cell RNA sequencing analysis. Yet, the application of t-SNE and UMAP in bulk transcriptomic analysis and comparison with conventional methods have not been achieved. We compare four major dimensionality reduction methods (PCA, multidimensional scaling [MDS], t-SNE, and UMAP) in analyzing 71 large bulk transcriptomic datasets. UMAP is superior to PCA and MDS but shows some advantages over t-SNE in differentiating batch effects, identifying pre-defined biological groups, and revealing in-depth clusters in two-dimensional space. Importantly, UMAP generates sample clusters uncovering biological features and clinical meaning. We recommend deploying UMAP in visualizing and analyzing sizable bulk transcriptomic datasets to reinforce sample heterogeneity analysis.
|