An Experimental Study on Cold-Bending Stress and Its Reverse-Coupling Effect with the Uniform Load on Cold-Bent SGP Laminated Glass

SentryGlas<sup>®</sup> Plus (SGP) laminated glass is a novel type of safety glass with high strength and stiffness. On the other hand, cold bending is a novel technique to build curved glass curtain walls, and is advantageous in terms of its greater energy efficiency and cost-effectivene...

Full description

Bibliographic Details
Main Authors: Xide Zhang, Chengyi Zou, Xiaoqi Yin
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/21/10073
Description
Summary:SentryGlas<sup>®</sup> Plus (SGP) laminated glass is a novel type of safety glass with high strength and stiffness. On the other hand, cold bending is a novel technique to build curved glass curtain walls, and is advantageous in terms of its greater energy efficiency and cost-effectiveness as well as its simple construction processes. The cold bending of SGP laminated glass could result in broad applications for the material and provide huge economic benefits in the field of glass curtain wall construction. To study cold-bending stress and its reverse-coupling effect with the uniform load in SGP laminated glass panels, single-corner cold-bending tests, uniform load tests, and ultimate capacity tests were conducted on eight pieces of such panels with different cold-bending curvatures and interlayer thicknesses. The results revealed that cold-bending stress in the glass panels under single-corner cold bending demonstrated a saddle-shaped distribution, with the maximum and second-largest cold-bending stresses located near the corner of the short side and the long side adjacent to the cold-bending corner, respectively. The cold-bending stress and coupling stress increased nonlinearly as the cold-bending curvature rose and the interlayer thickness became greater. Moreover, cold-bending curvature was a factor that affected the cold-bending stress and coupling stress more significantly than the interlayer thickness. The ultimate capacity and ultimate deflection of the glass panels decreased as the cold-bending curvature and interlayer thickness grew.
ISSN:2076-3417