ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI

The conventional CART method is a nonparametric classification method built on categorical response data. Bagging is one of the popular ensemble methods whereas, Random Forests (RF) is one of the relatively new ensemble methods in the decision tree that is the development of the Bagging method. Unli...

Full description

Bibliographic Details
Main Authors: Yogo Aryo Jatmiko, Septiadi Padmadisastra, Anna Chadidjah
Format: Article
Language:English
Published: Universitas Diponegoro 2019-07-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/18109
_version_ 1818511156379123712
author Yogo Aryo Jatmiko
Septiadi Padmadisastra
Anna Chadidjah
author_facet Yogo Aryo Jatmiko
Septiadi Padmadisastra
Anna Chadidjah
author_sort Yogo Aryo Jatmiko
collection DOAJ
description The conventional CART method is a nonparametric classification method built on categorical response data. Bagging is one of the popular ensemble methods whereas, Random Forests (RF) is one of the relatively new ensemble methods in the decision tree that is the development of the Bagging method. Unlike Bagging, Random Forest was developed with the idea of adding layers to the random resampling process in bagging. Therefore, not only randomly sampled sample data to form a classification tree, but also independent variables are randomly selected and newly selected as the best divider when determining the sorting of trees, which is expected to produce more accurate predictions. Based on the above, the authors are interested to study the three methods by comparing the accuracy of classification on binary and non-binary simulation data to understand the effect of the number of sample sizes, the correlation between independent variables, the presence or absence of certain distribution patterns to the accuracy generated classification method. Results of the research on simulation data show that the Random Forest ensemble method can improve the accuracy of classification.
first_indexed 2024-12-10T23:29:37Z
format Article
id doaj.art-261dc8cd2a4943f7bf23217edd324a83
institution Directory Open Access Journal
issn 1979-3693
2477-0647
language English
last_indexed 2024-12-10T23:29:37Z
publishDate 2019-07-01
publisher Universitas Diponegoro
record_format Article
series Media Statistika
spelling doaj.art-261dc8cd2a4943f7bf23217edd324a832022-12-22T01:29:27ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472019-07-0112111210.14710/medstat.12.1.1-1215235ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASIYogo Aryo Jatmiko0Septiadi Padmadisastra1Anna Chadidjah2Badan Pusat StatistikUniversitas PadjajaranUniversitas PadjajaranThe conventional CART method is a nonparametric classification method built on categorical response data. Bagging is one of the popular ensemble methods whereas, Random Forests (RF) is one of the relatively new ensemble methods in the decision tree that is the development of the Bagging method. Unlike Bagging, Random Forest was developed with the idea of adding layers to the random resampling process in bagging. Therefore, not only randomly sampled sample data to form a classification tree, but also independent variables are randomly selected and newly selected as the best divider when determining the sorting of trees, which is expected to produce more accurate predictions. Based on the above, the authors are interested to study the three methods by comparing the accuracy of classification on binary and non-binary simulation data to understand the effect of the number of sample sizes, the correlation between independent variables, the presence or absence of certain distribution patterns to the accuracy generated classification method. Results of the research on simulation data show that the Random Forest ensemble method can improve the accuracy of classification.https://ejournal.undip.ac.id/index.php/media_statistika/article/view/18109
spellingShingle Yogo Aryo Jatmiko
Septiadi Padmadisastra
Anna Chadidjah
ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI
Media Statistika
title ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI
title_full ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI
title_fullStr ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI
title_full_unstemmed ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI
title_short ANALISIS PERBANDINGAN KINERJA CART KONVENSIONAL, BAGGING DAN RANDOM FOREST PADA KLASIFIKASI OBJEK: HASIL DARI DUA SIMULASI
title_sort analisis perbandingan kinerja cart konvensional bagging dan random forest pada klasifikasi objek hasil dari dua simulasi
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/18109
work_keys_str_mv AT yogoaryojatmiko analisisperbandingankinerjacartkonvensionalbaggingdanrandomforestpadaklasifikasiobjekhasildariduasimulasi
AT septiadipadmadisastra analisisperbandingankinerjacartkonvensionalbaggingdanrandomforestpadaklasifikasiobjekhasildariduasimulasi
AT annachadidjah analisisperbandingankinerjacartkonvensionalbaggingdanrandomforestpadaklasifikasiobjekhasildariduasimulasi