External Mechanical Work in Runners With Unilateral Transfemoral Amputation
Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-12-01
|
Series: | Frontiers in Bioengineering and Biotechnology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fbioe.2021.793651/full |
_version_ | 1819008520496873472 |
---|---|
author | Hiroto Murata Hiroto Murata Genki Hisano Genki Hisano Genki Hisano Daisuke Ichimura Hiroshi Takemura Hiroaki Hobara |
author_facet | Hiroto Murata Hiroto Murata Genki Hisano Genki Hisano Genki Hisano Daisuke Ichimura Hiroshi Takemura Hiroaki Hobara |
author_sort | Hiroto Murata |
collection | DOAJ |
description | Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like “bouncing step” using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb’s step and decelerated in the unaffected limb’s step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running. |
first_indexed | 2024-12-21T00:41:47Z |
format | Article |
id | doaj.art-2623d90f11214db4a983bd9aae7c0442 |
institution | Directory Open Access Journal |
issn | 2296-4185 |
language | English |
last_indexed | 2024-12-21T00:41:47Z |
publishDate | 2021-12-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Bioengineering and Biotechnology |
spelling | doaj.art-2623d90f11214db4a983bd9aae7c04422022-12-21T19:21:38ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852021-12-01910.3389/fbioe.2021.793651793651External Mechanical Work in Runners With Unilateral Transfemoral AmputationHiroto Murata0Hiroto Murata1Genki Hisano2Genki Hisano3Genki Hisano4Daisuke Ichimura5Hiroshi Takemura6Hiroaki Hobara7Graduate School of Science and Technology, Tokyo University of Science, Chiba, JapanArtificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, JapanArtificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, JapanDepartment of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo, JapanResearch Fellow of Japan Society for the Promotion of Science, Tokyo, JapanArtificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, JapanGraduate School of Science and Technology, Tokyo University of Science, Chiba, JapanArtificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, JapanCarbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like “bouncing step” using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb’s step and decelerated in the unaffected limb’s step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running.https://www.frontiersin.org/articles/10.3389/fbioe.2021.793651/fullamputee locomotionexternal mechanical workbouncing gaitrunning-specific prosthesisground reaction forces |
spellingShingle | Hiroto Murata Hiroto Murata Genki Hisano Genki Hisano Genki Hisano Daisuke Ichimura Hiroshi Takemura Hiroaki Hobara External Mechanical Work in Runners With Unilateral Transfemoral Amputation Frontiers in Bioengineering and Biotechnology amputee locomotion external mechanical work bouncing gait running-specific prosthesis ground reaction forces |
title | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_full | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_fullStr | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_full_unstemmed | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_short | External Mechanical Work in Runners With Unilateral Transfemoral Amputation |
title_sort | external mechanical work in runners with unilateral transfemoral amputation |
topic | amputee locomotion external mechanical work bouncing gait running-specific prosthesis ground reaction forces |
url | https://www.frontiersin.org/articles/10.3389/fbioe.2021.793651/full |
work_keys_str_mv | AT hirotomurata externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT hirotomurata externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT genkihisano externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT genkihisano externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT genkihisano externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT daisukeichimura externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT hiroshitakemura externalmechanicalworkinrunnerswithunilateraltransfemoralamputation AT hiroakihobara externalmechanicalworkinrunnerswithunilateraltransfemoralamputation |