A Hypersurfaces of Revolution Family in the Five-Dimensional Pseudo-Euclidean Space <inline-formula><math display="inline"><semantics><msubsup><mi mathvariant="double-struck">E</mi><mrow><mn>2</mn></mrow><mn>5</mn></msubsup></semantics></math></inline-formula>

We present a family of hypersurfaces of revolution distinguished by four parameters in the five-dimensional pseudo-Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant=&quo...

Full description

Bibliographic Details
Main Authors: Yanlin Li, Erhan Güler
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/15/3427
Description
Summary:We present a family of hypersurfaces of revolution distinguished by four parameters in the five-dimensional pseudo-Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="double-struck">E</mi><mrow><mn>2</mn></mrow><mn>5</mn></msubsup></semantics></math></inline-formula>. The matrices corresponding to the fundamental form, Gauss map, and shape operator of this family are computed. By utilizing the Cayley–Hamilton theorem, we determine the curvatures of the specific family. Furthermore, we establish the criteria for maximality within this framework. Additionally, we reveal the relationship between the Laplace–Beltrami operator of the family and a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><mn>5</mn></mrow></semantics></math></inline-formula> matrix.
ISSN:2227-7390