In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
<p>The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating global climate change, but the impacts of the chemical components and atmospheric processing on the size distribution and mixing state of individual particles are rarely explored in the south-...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/23/9597/2023/acp-23-9597-2023.pdf |
_version_ | 1797732634827161600 |
---|---|
author | L. Li L. Li Q. Wang Q. Wang Q. Wang J. Tian H. Liu Y. Zhang S. Sai Hang Ho W. Ran J. Cao |
author_facet | L. Li L. Li Q. Wang Q. Wang Q. Wang J. Tian H. Liu Y. Zhang S. Sai Hang Ho W. Ran J. Cao |
author_sort | L. Li |
collection | DOAJ |
description | <p>The unique geographical location of the Tibetan Plateau (TP) plays an
important role in regulating global climate change, but the impacts of the
chemical components and atmospheric processing on the size distribution and
mixing state of individual particles are rarely explored in the south-eastern margin of the TP, which is a transport channel for pollutants from Southeast Asia to the TP during the pre-monsoon season. Thus a single-particle aerosol mass spectrometer (SPAMS) was deployed to investigate how the local emissions of chemical composition interact with the transporting particles and assess the mixing state of different particle types and secondary formation in this study. The TP particles were classified into six distinct types, mainly including the largest fraction of the potassium-rich (K-rich) type in the total particles (30.9 %), followed by the biomass burning (BB)
type (18.7 %). Most particle types were mainly transported from the sampling site's surroundings and along the Sino-Myanmar border, but the
air mass trajectories from north-eastern India and Myanmar show a greater
impact on the number fraction of the BB (31.7 %) and dust (18.2 %) types,
respectively. Then, the two episodes with high particle concentrations
showed that the differences in the meteorological conditions in the same
trajectory clusters could cause significant changes in chemical components,
especially the dust and aged elemental carbon (aged EC) types, which changed by a total of 93.6 %
and 72.0 %, respectively. Ammonium and dust particles distribute at a
relatively larger size (<span class="inline-formula">∼600</span> nm), but the size peak of other
types is present at <span class="inline-formula">∼440</span> nm. Compared with the abundant
sulfate (<span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="1b500fe23d5cc239bca0d49063c52557"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00001.png"/></svg:svg></span></span>), the low nitrate (<span class="inline-formula"><sup>62</sup></span>NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00002.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00002.png"/></svg:svg></span></span>)
internally mixed in TP particles is mainly due to the fact that nitrate is
more volatilized during the transport process. The formation mechanism of
secondary speciation demonstrates that the formation capacity of atmospheric
oxidation is presumably affected by the convective transmission and the
regional transport in the TP. However, the relative humidity (RH) could
significantly promote the formation of secondary species, especially
<span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a30bfde58a9ca9c078104c9522588f76"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00003.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><sup>18</sup></span>NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9837b1bc16c7511343fef307428ed3c8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00004.svg" width="8pt" height="15pt" src="acp-23-9597-2023-ie00004.png"/></svg:svg></span></span>. This study provides new
insights into the particle composition and size, mixing state, and ageing
mechanism in high time resolution over the TP region.</p> |
first_indexed | 2024-03-12T12:17:23Z |
format | Article |
id | doaj.art-2631485026ad482e95eed3897c9f0c65 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-03-12T12:17:23Z |
publishDate | 2023-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-2631485026ad482e95eed3897c9f0c652023-08-30T08:33:29ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-08-01239597961210.5194/acp-23-9597-2023In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan PlateauL. Li0L. Li1Q. Wang2Q. Wang3Q. Wang4J. Tian5H. Liu6Y. Zhang7S. Sai Hang Ho8W. Ran9J. Cao10Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaCAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaDivision of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United StatesKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China<p>The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating global climate change, but the impacts of the chemical components and atmospheric processing on the size distribution and mixing state of individual particles are rarely explored in the south-eastern margin of the TP, which is a transport channel for pollutants from Southeast Asia to the TP during the pre-monsoon season. Thus a single-particle aerosol mass spectrometer (SPAMS) was deployed to investigate how the local emissions of chemical composition interact with the transporting particles and assess the mixing state of different particle types and secondary formation in this study. The TP particles were classified into six distinct types, mainly including the largest fraction of the potassium-rich (K-rich) type in the total particles (30.9 %), followed by the biomass burning (BB) type (18.7 %). Most particle types were mainly transported from the sampling site's surroundings and along the Sino-Myanmar border, but the air mass trajectories from north-eastern India and Myanmar show a greater impact on the number fraction of the BB (31.7 %) and dust (18.2 %) types, respectively. Then, the two episodes with high particle concentrations showed that the differences in the meteorological conditions in the same trajectory clusters could cause significant changes in chemical components, especially the dust and aged elemental carbon (aged EC) types, which changed by a total of 93.6 % and 72.0 %, respectively. Ammonium and dust particles distribute at a relatively larger size (<span class="inline-formula">∼600</span> nm), but the size peak of other types is present at <span class="inline-formula">∼440</span> nm. Compared with the abundant sulfate (<span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="1b500fe23d5cc239bca0d49063c52557"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00001.png"/></svg:svg></span></span>), the low nitrate (<span class="inline-formula"><sup>62</sup></span>NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00002.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00002.png"/></svg:svg></span></span>) internally mixed in TP particles is mainly due to the fact that nitrate is more volatilized during the transport process. The formation mechanism of secondary speciation demonstrates that the formation capacity of atmospheric oxidation is presumably affected by the convective transmission and the regional transport in the TP. However, the relative humidity (RH) could significantly promote the formation of secondary species, especially <span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a30bfde58a9ca9c078104c9522588f76"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00003.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><sup>18</sup></span>NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9837b1bc16c7511343fef307428ed3c8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00004.svg" width="8pt" height="15pt" src="acp-23-9597-2023-ie00004.png"/></svg:svg></span></span>. This study provides new insights into the particle composition and size, mixing state, and ageing mechanism in high time resolution over the TP region.</p>https://acp.copernicus.org/articles/23/9597/2023/acp-23-9597-2023.pdf |
spellingShingle | L. Li L. Li Q. Wang Q. Wang Q. Wang J. Tian H. Liu Y. Zhang S. Sai Hang Ho W. Ran J. Cao In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau Atmospheric Chemistry and Physics |
title | In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau |
title_full | In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau |
title_fullStr | In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau |
title_full_unstemmed | In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau |
title_short | In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau |
title_sort | in depth study of the formation processes of single atmospheric particles in the south eastern margin of the tibetan plateau |
url | https://acp.copernicus.org/articles/23/9597/2023/acp-23-9597-2023.pdf |
work_keys_str_mv | AT lli indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT lli indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT qwang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT qwang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT qwang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT jtian indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT hliu indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT yzhang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT ssaihangho indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT wran indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau AT jcao indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau |