In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau

<p>The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating global climate change, but the impacts of the chemical components and atmospheric processing on the size distribution and mixing state of individual particles are rarely explored in the south-...

Full description

Bibliographic Details
Main Authors: L. Li, Q. Wang, J. Tian, H. Liu, Y. Zhang, S. Sai Hang Ho, W. Ran, J. Cao
Format: Article
Language:English
Published: Copernicus Publications 2023-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/9597/2023/acp-23-9597-2023.pdf
_version_ 1797732634827161600
author L. Li
L. Li
Q. Wang
Q. Wang
Q. Wang
J. Tian
H. Liu
Y. Zhang
S. Sai Hang Ho
W. Ran
J. Cao
author_facet L. Li
L. Li
Q. Wang
Q. Wang
Q. Wang
J. Tian
H. Liu
Y. Zhang
S. Sai Hang Ho
W. Ran
J. Cao
author_sort L. Li
collection DOAJ
description <p>The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating global climate change, but the impacts of the chemical components and atmospheric processing on the size distribution and mixing state of individual particles are rarely explored in the south-eastern margin of the TP, which is a transport channel for pollutants from Southeast Asia to the TP during the pre-monsoon season. Thus a single-particle aerosol mass spectrometer (SPAMS) was deployed to investigate how the local emissions of chemical composition interact with the transporting particles and assess the mixing state of different particle types and secondary formation in this study. The TP particles were classified into six distinct types, mainly including the largest fraction of the potassium-rich (K-rich) type in the total particles (30.9 %), followed by the biomass burning (BB) type (18.7 %). Most particle types were mainly transported from the sampling site's surroundings and along the Sino-Myanmar border, but the air mass trajectories from north-eastern India and Myanmar show a greater impact on the number fraction of the BB (31.7 %) and dust (18.2 %) types, respectively. Then, the two episodes with high particle concentrations showed that the differences in the meteorological conditions in the same trajectory clusters could cause significant changes in chemical components, especially the dust and aged elemental carbon (aged EC) types, which changed by a total of 93.6 % and 72.0 %, respectively. Ammonium and dust particles distribute at a relatively larger size (<span class="inline-formula">∼600</span> nm), but the size peak of other types is present at <span class="inline-formula">∼440</span> nm. Compared with the abundant sulfate (<span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="1b500fe23d5cc239bca0d49063c52557"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00001.png"/></svg:svg></span></span>), the low nitrate (<span class="inline-formula"><sup>62</sup></span>NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00002.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00002.png"/></svg:svg></span></span>) internally mixed in TP particles is mainly due to the fact that nitrate is more volatilized during the transport process. The formation mechanism of secondary speciation demonstrates that the formation capacity of atmospheric oxidation is presumably affected by the convective transmission and the regional transport in the TP. However, the relative humidity (RH) could significantly promote the formation of secondary species, especially <span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a30bfde58a9ca9c078104c9522588f76"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00003.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><sup>18</sup></span>NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9837b1bc16c7511343fef307428ed3c8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00004.svg" width="8pt" height="15pt" src="acp-23-9597-2023-ie00004.png"/></svg:svg></span></span>. This study provides new insights into the particle composition and size, mixing state, and ageing mechanism in high time resolution over the TP region.</p>
first_indexed 2024-03-12T12:17:23Z
format Article
id doaj.art-2631485026ad482e95eed3897c9f0c65
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-03-12T12:17:23Z
publishDate 2023-08-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-2631485026ad482e95eed3897c9f0c652023-08-30T08:33:29ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-08-01239597961210.5194/acp-23-9597-2023In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan PlateauL. Li0L. Li1Q. Wang2Q. Wang3Q. Wang4J. Tian5H. Liu6Y. Zhang7S. Sai Hang Ho8W. Ran9J. Cao10Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaCAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaDivision of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United StatesKey Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China<p>The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating global climate change, but the impacts of the chemical components and atmospheric processing on the size distribution and mixing state of individual particles are rarely explored in the south-eastern margin of the TP, which is a transport channel for pollutants from Southeast Asia to the TP during the pre-monsoon season. Thus a single-particle aerosol mass spectrometer (SPAMS) was deployed to investigate how the local emissions of chemical composition interact with the transporting particles and assess the mixing state of different particle types and secondary formation in this study. The TP particles were classified into six distinct types, mainly including the largest fraction of the potassium-rich (K-rich) type in the total particles (30.9 %), followed by the biomass burning (BB) type (18.7 %). Most particle types were mainly transported from the sampling site's surroundings and along the Sino-Myanmar border, but the air mass trajectories from north-eastern India and Myanmar show a greater impact on the number fraction of the BB (31.7 %) and dust (18.2 %) types, respectively. Then, the two episodes with high particle concentrations showed that the differences in the meteorological conditions in the same trajectory clusters could cause significant changes in chemical components, especially the dust and aged elemental carbon (aged EC) types, which changed by a total of 93.6 % and 72.0 %, respectively. Ammonium and dust particles distribute at a relatively larger size (<span class="inline-formula">∼600</span> nm), but the size peak of other types is present at <span class="inline-formula">∼440</span> nm. Compared with the abundant sulfate (<span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="1b500fe23d5cc239bca0d49063c52557"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00001.png"/></svg:svg></span></span>), the low nitrate (<span class="inline-formula"><sup>62</sup></span>NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00002.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00002.png"/></svg:svg></span></span>) internally mixed in TP particles is mainly due to the fact that nitrate is more volatilized during the transport process. The formation mechanism of secondary speciation demonstrates that the formation capacity of atmospheric oxidation is presumably affected by the convective transmission and the regional transport in the TP. However, the relative humidity (RH) could significantly promote the formation of secondary species, especially <span class="inline-formula"><sup>97</sup></span>HSO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a30bfde58a9ca9c078104c9522588f76"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00003.svg" width="9pt" height="16pt" src="acp-23-9597-2023-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><sup>18</sup></span>NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9837b1bc16c7511343fef307428ed3c8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-9597-2023-ie00004.svg" width="8pt" height="15pt" src="acp-23-9597-2023-ie00004.png"/></svg:svg></span></span>. This study provides new insights into the particle composition and size, mixing state, and ageing mechanism in high time resolution over the TP region.</p>https://acp.copernicus.org/articles/23/9597/2023/acp-23-9597-2023.pdf
spellingShingle L. Li
L. Li
Q. Wang
Q. Wang
Q. Wang
J. Tian
H. Liu
Y. Zhang
S. Sai Hang Ho
W. Ran
J. Cao
In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
Atmospheric Chemistry and Physics
title In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
title_full In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
title_fullStr In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
title_full_unstemmed In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
title_short In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
title_sort in depth study of the formation processes of single atmospheric particles in the south eastern margin of the tibetan plateau
url https://acp.copernicus.org/articles/23/9597/2023/acp-23-9597-2023.pdf
work_keys_str_mv AT lli indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT lli indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT qwang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT qwang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT qwang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT jtian indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT hliu indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT yzhang indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT ssaihangho indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT wran indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau
AT jcao indepthstudyoftheformationprocessesofsingleatmosphericparticlesinthesoutheasternmarginofthetibetanplateau