Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images

This paper focuses on the ultimate limit theory of image compression. It proves that for an image source, there exists a coding method with shapes that can achieve the entropy rate under a certain condition where the shape-pixel ratio in the encoder/decoder is <inline-formula><math xmlns=&q...

Full description

Bibliographic Details
Main Authors: Gangtao Xin, Pingyi Fan, Khaled B. Letaief
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/1/48
_version_ 1797442997320679424
author Gangtao Xin
Pingyi Fan
Khaled B. Letaief
author_facet Gangtao Xin
Pingyi Fan
Khaled B. Letaief
author_sort Gangtao Xin
collection DOAJ
description This paper focuses on the ultimate limit theory of image compression. It proves that for an image source, there exists a coding method with shapes that can achieve the entropy rate under a certain condition where the shape-pixel ratio in the encoder/decoder is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><mrow><mn>1</mn><mo>/</mo><mrow><mo form="prefix">log</mo><mi>t</mi></mrow></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. Based on the new finding, an image coding framework with shapes is proposed and proved to be asymptotically optimal for stationary and ergodic processes. Moreover, the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><mrow><mn>1</mn><mo>/</mo><mrow><mo form="prefix">log</mo><mi>t</mi></mrow></mrow><mo>)</mo></mrow></semantics></math></inline-formula> of shape-pixel ratio in the encoder/decoder has been confirmed in the image database MNIST, which illustrates the soft compression with shape coding is a near-optimal scheme for lossless compression of images.
first_indexed 2024-03-09T12:49:43Z
format Article
id doaj.art-264816375a874579ba7f811d7335550c
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T12:49:43Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-264816375a874579ba7f811d7335550c2023-11-30T22:07:30ZengMDPI AGEntropy1099-43002022-12-012514810.3390/e25010048Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital ImagesGangtao Xin0Pingyi Fan1Khaled B. Letaief2Department of Electronic Engineering, Tsinghua University, Beijing 100084, ChinaDepartment of Electronic Engineering, Tsinghua University, Beijing 100084, ChinaDepartment of Electrical and Computer Engineering, Hong Kong University of Science and Technology (HKUST), Hong KongThis paper focuses on the ultimate limit theory of image compression. It proves that for an image source, there exists a coding method with shapes that can achieve the entropy rate under a certain condition where the shape-pixel ratio in the encoder/decoder is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><mrow><mn>1</mn><mo>/</mo><mrow><mo form="prefix">log</mo><mi>t</mi></mrow></mrow><mo>)</mo></mrow></semantics></math></inline-formula>. Based on the new finding, an image coding framework with shapes is proposed and proved to be asymptotically optimal for stationary and ergodic processes. Moreover, the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><mrow><mn>1</mn><mo>/</mo><mrow><mo form="prefix">log</mo><mi>t</mi></mrow></mrow><mo>)</mo></mrow></semantics></math></inline-formula> of shape-pixel ratio in the encoder/decoder has been confirmed in the image database MNIST, which illustrates the soft compression with shape coding is a near-optimal scheme for lossless compression of images.https://www.mdpi.com/1099-4300/25/1/48image compressioninformation theoryentropy ratelimit theoremasymptotic bounds
spellingShingle Gangtao Xin
Pingyi Fan
Khaled B. Letaief
Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images
Entropy
image compression
information theory
entropy rate
limit theorem
asymptotic bounds
title Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images
title_full Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images
title_fullStr Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images
title_full_unstemmed Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images
title_short Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images
title_sort why shape coding asymptotic analysis of the entropy rate for digital images
topic image compression
information theory
entropy rate
limit theorem
asymptotic bounds
url https://www.mdpi.com/1099-4300/25/1/48
work_keys_str_mv AT gangtaoxin whyshapecodingasymptoticanalysisoftheentropyratefordigitalimages
AT pingyifan whyshapecodingasymptoticanalysisoftheentropyratefordigitalimages
AT khaledbletaief whyshapecodingasymptoticanalysisoftheentropyratefordigitalimages