Parameter estimation for stable distributions with application to commodity futures log-returns

This paper explores the theory behind the rich and robust family of $ \alpha $-stable distributions to estimate parameters from financial asset log-returns data. We discuss four-parameter estimation methods including the quantiles, logarithmic moments method, maximum likelihood (ML), and the empiric...

Full description

Bibliographic Details
Main Authors: M. Kateregga, S. Mataramvura, D. Taylor
Format: Article
Language:English
Published: Taylor & Francis Group 2017-01-01
Series:Cogent Economics & Finance
Subjects:
Online Access:http://dx.doi.org/10.1080/23322039.2017.1318813
_version_ 1818415426169733120
author M. Kateregga
S. Mataramvura
D. Taylor
author_facet M. Kateregga
S. Mataramvura
D. Taylor
author_sort M. Kateregga
collection DOAJ
description This paper explores the theory behind the rich and robust family of $ \alpha $-stable distributions to estimate parameters from financial asset log-returns data. We discuss four-parameter estimation methods including the quantiles, logarithmic moments method, maximum likelihood (ML), and the empirical characteristics function (ECF) method. The contribution of the paper is two-fold: first, we discuss the above parametric approaches and investigate their performance through error analysis. Moreover, we argue that the ECF performs better than the ML over a wide range of shape parameter values, $ \alpha $ including values closest to 0 and 2 and that the ECF has a better convergence rate than the ML. Secondly, we compare the t location-scale distribution to the general stable distribution and show that the former fails to capture skewness which might exist in the data. This is observed through applying the ECF to commodity futures log-returns data to obtain the skewness parameter.
first_indexed 2024-12-14T11:34:48Z
format Article
id doaj.art-264de8d1279d437b9426e4fc9110e28e
institution Directory Open Access Journal
issn 2332-2039
language English
last_indexed 2024-12-14T11:34:48Z
publishDate 2017-01-01
publisher Taylor & Francis Group
record_format Article
series Cogent Economics & Finance
spelling doaj.art-264de8d1279d437b9426e4fc9110e28e2022-12-21T23:03:06ZengTaylor & Francis GroupCogent Economics & Finance2332-20392017-01-015110.1080/23322039.2017.13188131318813Parameter estimation for stable distributions with application to commodity futures log-returnsM. Kateregga0S. Mataramvura1D. Taylor2University of Cape TownUniversity of Cape TownUniversity of Cape TownThis paper explores the theory behind the rich and robust family of $ \alpha $-stable distributions to estimate parameters from financial asset log-returns data. We discuss four-parameter estimation methods including the quantiles, logarithmic moments method, maximum likelihood (ML), and the empirical characteristics function (ECF) method. The contribution of the paper is two-fold: first, we discuss the above parametric approaches and investigate their performance through error analysis. Moreover, we argue that the ECF performs better than the ML over a wide range of shape parameter values, $ \alpha $ including values closest to 0 and 2 and that the ECF has a better convergence rate than the ML. Secondly, we compare the t location-scale distribution to the general stable distribution and show that the former fails to capture skewness which might exist in the data. This is observed through applying the ECF to commodity futures log-returns data to obtain the skewness parameter.http://dx.doi.org/10.1080/23322039.2017.1318813stable distributionparameter estimationdensity estimation
spellingShingle M. Kateregga
S. Mataramvura
D. Taylor
Parameter estimation for stable distributions with application to commodity futures log-returns
Cogent Economics & Finance
stable distribution
parameter estimation
density estimation
title Parameter estimation for stable distributions with application to commodity futures log-returns
title_full Parameter estimation for stable distributions with application to commodity futures log-returns
title_fullStr Parameter estimation for stable distributions with application to commodity futures log-returns
title_full_unstemmed Parameter estimation for stable distributions with application to commodity futures log-returns
title_short Parameter estimation for stable distributions with application to commodity futures log-returns
title_sort parameter estimation for stable distributions with application to commodity futures log returns
topic stable distribution
parameter estimation
density estimation
url http://dx.doi.org/10.1080/23322039.2017.1318813
work_keys_str_mv AT mkateregga parameterestimationforstabledistributionswithapplicationtocommodityfutureslogreturns
AT smataramvura parameterestimationforstabledistributionswithapplicationtocommodityfutureslogreturns
AT dtaylor parameterestimationforstabledistributionswithapplicationtocommodityfutureslogreturns