Analysis of the Refined Mean-Field Approximation for the 802.11 Protocol Model
Mean-field approximation is a method to investigate the behavior of stochastic models formed by a large number of interacting objects. A new approximation was recently established, i.e., the refined mean-field approximation, and its high accuracy when the number of objects is small has been shown. I...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/22/8754 |
Summary: | Mean-field approximation is a method to investigate the behavior of stochastic models formed by a large number of interacting objects. A new approximation was recently established, i.e., the refined mean-field approximation, and its high accuracy when the number of objects is small has been shown. In this work, we consider the model of the 802.11 protocol, which is a discrete-time model and show how the refined mean-field approximation can be adapted to this model. Our results confirm the accuracy of the refined mean-field approximation when the model with N objects is in discrete time. |
---|---|
ISSN: | 1424-8220 |