Summary: | Abstract Epigallocatechin gallate (EGCG) has the effect to protect skin from ultraviolet B (UVB) induced damages, but it is unstable under ambient conditions, being susceptible to become brown in color. Gallocatechin gallate (GCG), an epimer counterpart of EGCG, is more stable chemically than EGCG. The potential effects of GCG against UVB-induced skin damages has not been available. The objective of this study was to investigate the protective effects of GCG against UVB-induced skin photodamages. GCG was topically applied on the skin of hairless mice at three dosage levels (LL, 12.5 mg/mL; ML 25 mg/mL; HL, 50 mg/mL), with EGCG and a commercially available baby sunscreen lotion SPF50 PA+++ as control. The mice were then irradiated by UVB (fluence rate 1.7 µmol/m2 s) for 45 min. The treatments were carried out once a day for 6 consecutive days. Skin measurements and histological studies were performed at the end of experiment. The results show that GCG treatments at ML and HL levels inhibited the increase in levels of skin oil and pigmentation induced by UVB irradiation, and improved the skin elasticity and collagen fibers. GCG at ML and HL levels inhibited the formation of melanosomes and aberrations in mitochondria of UVB-irradiated skin in hairless mice. It is concluded that GCG protected skin from UVB-induced photodamages by improving skin elasticity and collagen fibers, and inhibiting aberrations in mitochondria and formation of melanosomes.
|