A Novel UHPLC-MS/MS-Based Bioanalytical Method Developed for S-Allyl Cysteine in the Establishment of a Comparative Pharmacokinetic Study

A newly UHPLC-MS/MS method development and validation for S-Allyl Cysteine was used to evaluate the comparative pharmacokinetic parameters. SC PLGA NPs (S-Allyl Cysteine Poly (D,L-lactide-co-glycolic acid) Nanoparticles) were developed by the emulsion solvent evaporation method. SC PLGA NPs showed t...

Full description

Bibliographic Details
Main Authors: Mohd Faiyaz Khan, Niyaz Ahmad, Faisal K. Alkholifi, Zabih Ullah, Sadaf Farooqui, Nazia Khan, Mohammed Saifuddin Khalid, Mir Naiman Ali, Hajera Tabassum
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Separations
Subjects:
Online Access:https://www.mdpi.com/2297-8739/10/8/423
Description
Summary:A newly UHPLC-MS/MS method development and validation for S-Allyl Cysteine was used to evaluate the comparative pharmacokinetic parameters. SC PLGA NPs (S-Allyl Cysteine Poly (D,L-lactide-co-glycolic acid) Nanoparticles) were developed by the emulsion solvent evaporation method. SC PLGA NPs showed their drug loading and encapsulation efficiency to be 5.13 ± 0.10% and 82.36 ± 4.01%, respectively. SC PLGA NPs showed a spherical morphology of an average size (134.8 ± 4.61 nm), PDI: 0.277 ± 0.004, and −25.3 ± 1.03 mV Zeta-Potential (ZP), and is suitable for oral delivery. The development and validation of the UHPLC-MS/MS bioanalytical method were performed successfully for PK-parameter examinations with 1.219 min RT, MS (162.00/73.10), and a total run-time of 2.0 min. Additionally, 1.0–1000.0 ng/mL was a linear range with inter- and intra-day accuracy of 92.55–99.40%, followed by a precision of 1.88–4.23%. SC PLGA NP’s oral bioavailability was significantly higher (** <i>p</i> < 0.01) in comparison to the SC-S treated groups’ (iv and oral). The antimicrobial activity of SC PLGA NPs proved to be more effective than pure S-Allyl-L-Cysteine with significant results (<i>p</i> < 0.01) in comparison to SC-S. SC PLGA NPs showed fitted physicochemical and enhanced antimicrobial properties, which can be helpful for oral administration. Based on the proposed research results, SC PLGA NPs were used for the improvement in oral bioavailability with a sustained and controlled release of S-Allyl-L-Cysteine delivery.
ISSN:2297-8739