Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration

In this paper, the direct differentiation of generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula>...

Full description

Bibliographic Details
Main Authors: Erich Wehrle, Veit Gufler
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/12/2/128
_version_ 1797297658086293504
author Erich Wehrle
Veit Gufler
author_facet Erich Wehrle
Veit Gufler
author_sort Erich Wehrle
collection DOAJ
description In this paper, the direct differentiation of generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> time integration is derived, equations are introduced and results are shown. Although generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> time integration via direct differentiation are provided. Results with generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> are compared with Newmark-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">β</mi></semantics></math></inline-formula> time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.
first_indexed 2024-03-07T22:23:32Z
format Article
id doaj.art-267e4b57ccd6416a873f18c3aa684833
institution Directory Open Access Journal
issn 2075-1702
language English
last_indexed 2024-03-07T22:23:32Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Machines
spelling doaj.art-267e4b57ccd6416a873f18c3aa6848332024-02-23T15:25:05ZengMDPI AGMachines2075-17022024-02-0112212810.3390/machines12020128Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time IntegrationErich Wehrle0Veit Gufler1Collins Aerospace, Applied Research and Technology, Multidisciplinary Design Optimization Research Group, 80805 Munich, GermanyFaculty of Engineering, Free University of Bozen-Bolzano, Universitätsplatz 1, 39100 Bozen, South Tyrol, ItalyIn this paper, the direct differentiation of generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> time integration is derived, equations are introduced and results are shown. Although generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> time integration via direct differentiation are provided. Results with generalized-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">α</mi></semantics></math></inline-formula> are compared with Newmark-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">β</mi></semantics></math></inline-formula> time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.https://www.mdpi.com/2075-1702/12/2/128sensitivity analysistime integrationstructural dynamicsflexible multibody dynamics
spellingShingle Erich Wehrle
Veit Gufler
Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration
Machines
sensitivity analysis
time integration
structural dynamics
flexible multibody dynamics
title Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration
title_full Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration
title_fullStr Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration
title_full_unstemmed Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration
title_short Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration
title_sort analytical sensitivity analysis of dynamic problems with direct differentiation of generalized i α i time integration
topic sensitivity analysis
time integration
structural dynamics
flexible multibody dynamics
url https://www.mdpi.com/2075-1702/12/2/128
work_keys_str_mv AT erichwehrle analyticalsensitivityanalysisofdynamicproblemswithdirectdifferentiationofgeneralizediaitimeintegration
AT veitgufler analyticalsensitivityanalysisofdynamicproblemswithdirectdifferentiationofgeneralizediaitimeintegration