Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its Nitridation

Hexagonal nanocrystals were obtained from Zn-doped GaN powders and Mg-doped GaN powders, which were synthesized via pyrolysis of a viscous complex compound, followed by its nitridation. XRD showed well-defined peaks for hexagonal GaN with an average crystal size of 21.3 nm. Scanning electron microsc...

Full description

Bibliographic Details
Main Authors: Erick Gastellóu, Rafael García, Ana M. Herrera, Antonio Ramos, Godofredo García, Gustavo A. Hirata, José A. Luna, Roberto C. Carrillo, Jorge A. Rodríguez, Mario Robles, Yani D. Ramírez
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/13/10/1421
_version_ 1797574190264483840
author Erick Gastellóu
Rafael García
Ana M. Herrera
Antonio Ramos
Godofredo García
Gustavo A. Hirata
José A. Luna
Roberto C. Carrillo
Jorge A. Rodríguez
Mario Robles
Yani D. Ramírez
author_facet Erick Gastellóu
Rafael García
Ana M. Herrera
Antonio Ramos
Godofredo García
Gustavo A. Hirata
José A. Luna
Roberto C. Carrillo
Jorge A. Rodríguez
Mario Robles
Yani D. Ramírez
author_sort Erick Gastellóu
collection DOAJ
description Hexagonal nanocrystals were obtained from Zn-doped GaN powders and Mg-doped GaN powders, which were synthesized via pyrolysis of a viscous complex compound, followed by its nitridation. XRD showed well-defined peaks for hexagonal GaN with an average crystal size of 21.3 nm. Scanning electron microscopy showed an amorphous and porous appearance in surface morphology, which could be related to the combustion process. Energy-dispersive spectroscopy characterization showed contributions of gallium, nitrogen, and small traces of Zn and Mg in the GaN samples. TEM showed the presence of well-defined hexagonal nanocrystals with an area of 75.9 nm<sup>2</sup> for the Zn-doped GaN powders and an area of 67.7 nm<sup>2</sup> for the Mg-doped GaN powders. The photoluminescence spectra showed an emission energy of 2.8 eV (431.5 nm) for the Zn-doped GaN powders, while the Mg-doped GaN powders showed energies in the range from 2.7 eV to 2.8 eV (460.3 nm–443.9 nm). The Raman scattering showed spectra where the vibration modes A<sub>1</sub>(TO), E<sub>1</sub>(TO), and E<sub>2</sub>(High) could be observed, which are characteristic of hexagonal GaN.
first_indexed 2024-03-10T21:19:20Z
format Article
id doaj.art-268327c66ad64f95bb498aa154f4a6ca
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-10T21:19:20Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-268327c66ad64f95bb498aa154f4a6ca2023-11-19T16:08:59ZengMDPI AGCrystals2073-43522023-09-011310142110.3390/cryst13101421Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its NitridationErick Gastellóu0Rafael García1Ana M. Herrera2Antonio Ramos3Godofredo García4Gustavo A. Hirata5José A. Luna6Roberto C. Carrillo7Jorge A. Rodríguez8Mario Robles9Yani D. Ramírez10División de Sistemas Automotrices, Universidad Tecnológica de Puebla (UTP), Antiguo Camino a la Resurrección 1002-A, Zona Industrial, Puebla 72300, Puebla, MexicoDepartamento de Investigación en Física, Universidad de Sonora (UNISON), Rosales y Colosio, C. De la Sabiduría, Centro, Hermosillo 83000, Sonora, MexicoDepartamento de Investigación en Física, Universidad de Sonora (UNISON), Rosales y Colosio, C. De la Sabiduría, Centro, Hermosillo 83000, Sonora, MexicoDepartamento de Investigación en Física, Universidad de Sonora (UNISON), Rosales y Colosio, C. De la Sabiduría, Centro, Hermosillo 83000, Sonora, MexicoCentro de Investigacion en Dispositivos Semiconductores, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur y Av. San Claudio, Puebla 72570, Puebla, MexicoCentro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Carr. Tijuana-Ensenada km107, C.I.C.E.S.E., Ensenada 22860, Baja California, MexicoCentro de Investigacion en Dispositivos Semiconductores, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur y Av. San Claudio, Puebla 72570, Puebla, MexicoDepartamento de Física, Universidad de Sonora (UNISON), Rosales y Colosio, C. De la Sabiduría, Centro, Hermosillo 83000, Sonora, MexicoDivisión de Sistemas Automotrices, Universidad Tecnológica de Puebla (UTP), Antiguo Camino a la Resurrección 1002-A, Zona Industrial, Puebla 72300, Puebla, MexicoDivisión de Sistemas Automotrices, Universidad Tecnológica de Puebla (UTP), Antiguo Camino a la Resurrección 1002-A, Zona Industrial, Puebla 72300, Puebla, MexicoDepartamento de Investigación y Desarrollo, Universidad Tecnológica de Puebla (UTP), Antiguo Camino a La Resurrección 1002-A, Zona Industrial, Puebla 72300, Pueble, MexicoHexagonal nanocrystals were obtained from Zn-doped GaN powders and Mg-doped GaN powders, which were synthesized via pyrolysis of a viscous complex compound, followed by its nitridation. XRD showed well-defined peaks for hexagonal GaN with an average crystal size of 21.3 nm. Scanning electron microscopy showed an amorphous and porous appearance in surface morphology, which could be related to the combustion process. Energy-dispersive spectroscopy characterization showed contributions of gallium, nitrogen, and small traces of Zn and Mg in the GaN samples. TEM showed the presence of well-defined hexagonal nanocrystals with an area of 75.9 nm<sup>2</sup> for the Zn-doped GaN powders and an area of 67.7 nm<sup>2</sup> for the Mg-doped GaN powders. The photoluminescence spectra showed an emission energy of 2.8 eV (431.5 nm) for the Zn-doped GaN powders, while the Mg-doped GaN powders showed energies in the range from 2.7 eV to 2.8 eV (460.3 nm–443.9 nm). The Raman scattering showed spectra where the vibration modes A<sub>1</sub>(TO), E<sub>1</sub>(TO), and E<sub>2</sub>(High) could be observed, which are characteristic of hexagonal GaN.https://www.mdpi.com/2073-4352/13/10/1421powderGaNpyrolysiscrystal latticeviscous complex compound
spellingShingle Erick Gastellóu
Rafael García
Ana M. Herrera
Antonio Ramos
Godofredo García
Gustavo A. Hirata
José A. Luna
Roberto C. Carrillo
Jorge A. Rodríguez
Mario Robles
Yani D. Ramírez
Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its Nitridation
Crystals
powder
GaN
pyrolysis
crystal lattice
viscous complex compound
title Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its Nitridation
title_full Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its Nitridation
title_fullStr Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its Nitridation
title_full_unstemmed Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its Nitridation
title_short Hexagonal Nanocrystal Growth of Mg or Zn from Incorporation in GaN Powders Obtained through Pyrolysis of a Viscous Complex Compound and Its Nitridation
title_sort hexagonal nanocrystal growth of mg or zn from incorporation in gan powders obtained through pyrolysis of a viscous complex compound and its nitridation
topic powder
GaN
pyrolysis
crystal lattice
viscous complex compound
url https://www.mdpi.com/2073-4352/13/10/1421
work_keys_str_mv AT erickgastellou hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT rafaelgarcia hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT anamherrera hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT antonioramos hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT godofredogarcia hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT gustavoahirata hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT josealuna hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT robertoccarrillo hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT jorgearodriguez hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT mariorobles hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation
AT yanidramirez hexagonalnanocrystalgrowthofmgorznfromincorporationinganpowdersobtainedthroughpyrolysisofaviscouscomplexcompoundanditsnitridation