Angle-Resolved Intensity of Polarized Micro-Raman Spectroscopy for 4H-SiC

Raman spectroscopy is an indispensable method for the nondestructive testing of semiconductor materials and their microstructures. This paper presents a study on the angle-resolved intensity of polarized micro-Raman spectroscopy for a 4H silicon carbide (4H-SiC) wafer. A generalized theoretical mode...

Full description

Bibliographic Details
Main Authors: Ying Chang, Aixia Xiao, Rubing Li, Miaojing Wang, Saisai He, Mingyuan Sun, Lizhong Wang, Chuanyong Qu, Wei Qiu
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/6/626
Description
Summary:Raman spectroscopy is an indispensable method for the nondestructive testing of semiconductor materials and their microstructures. This paper presents a study on the angle-resolved intensity of polarized micro-Raman spectroscopy for a 4H silicon carbide (4H-SiC) wafer. A generalized theoretical model of polarized Raman intensity was established by considering the birefringence effect. The distributions of angle-resolved Raman intensities were achieved under normal and oblique backscattering configurations. Experiments were performed on a self-built angle-resolved Raman system, which verified the validity of the proposed model and achieved the identification of crystal orientations of the 4H-SiC sample.
ISSN:2073-4352