Energy Transport by Kelvin-Helmholtz Instability at the Magnetopause

By means of the formation of vortices in the nonlinear phase, the Kelvin Helmholtz instability is able to redistribute the flux of energy of the solar wind that flows parallel to the magnetopause. The energy transport associated with the Kelvin Helmholtz instability contributes significantly to the...

Full description

Bibliographic Details
Main Author: Francesco Palermo
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/4/4/189
Description
Summary:By means of the formation of vortices in the nonlinear phase, the Kelvin Helmholtz instability is able to redistribute the flux of energy of the solar wind that flows parallel to the magnetopause. The energy transport associated with the Kelvin Helmholtz instability contributes significantly to the magnetosphere and magnetosheath dynamics, in particular at the flanks of the magnetopause where the presence of a magnetic field perpendicular to the velocity flow does not inhibit the instability development. By means of a 2D two-fluid simulation code, the behavior of the Kelvin Helmholtz instability is investigated in the presence of typical conditions observed at the magnetopause. In particular, the energy penetration in the magnetosphere is studied as a function of an important parameter such as the solar wind velocity. The influence of the density jump at the magnetopause is also discussed.
ISSN:2311-5521