Summary: | The seasonality of the vertical mixing at coastal sites is not well characterized yet. Here, a time series of the dissipation rate of turbulent kinetic energy (ε) was obtained from weekly morning microstructure observations covering the destratification period (July 2015, February 2016) at a coastal site in the western Mediterranean Sea, influenced by freshwater runoffs. Estimated with bulk parameters from the public re-analyzed dataset ERA5, the Ekman layer, and the convective penetration depth scale with the mixed layer depth (<i>MLD</i>) with a good agreement. Below the <i>MLD</i>, peaks of ε are observed in the baroclinic layers that progressively overlap with the bottom layer, where repeated near-bottom turbidity peaks provide evidence of sediment resuspension, suggesting energetic processes within the bottom boundary layer. In the subsurface, moderate values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>8</mn></mrow></msup><mtext> </mtext><mi mathvariant="normal">W</mi><mtext> </mtext><msup><mrow><mi>kg</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>) are observed, following a Burr type XII distribution. Significant correlation with ε at <i>MLD</i> is obtained with a model combining the effects of wind, wind–wave, and convection, highlighting a calm sea bias in our data, plus a sunrise bias when morning buoyancy fluxes are stabilizing. Another correlation, obtained from a pure-wind estimation 18 h before, suggests the role of wind in generating internal waves in the stratified layers, thus, impacting mixing intensity.
|