A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
Abstract The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthes...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-023-43409-6 |
_version_ | 1827633738966630400 |
---|---|
author | Leiming Hu Jacob A. Wrubel Carlos M. Baez-Cotto Fry Intia Jae Hyung Park Arthur Jeremy Kropf Nancy Kariuki Zhe Huang Ahmed Farghaly Lynda Amichi Prantik Saha Ling Tao David A. Cullen Deborah J. Myers Magali S. Ferrandon K. C. Neyerlin |
author_facet | Leiming Hu Jacob A. Wrubel Carlos M. Baez-Cotto Fry Intia Jae Hyung Park Arthur Jeremy Kropf Nancy Kariuki Zhe Huang Ahmed Farghaly Lynda Amichi Prantik Saha Ling Tao David A. Cullen Deborah J. Myers Magali S. Ferrandon K. C. Neyerlin |
author_sort | Leiming Hu |
collection | DOAJ |
description | Abstract The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H2 electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm2 in a 25 cm2 cell. More critically, a 55-hour stability test at 200 mA/cm2 shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods. |
first_indexed | 2024-03-09T15:03:43Z |
format | Article |
id | doaj.art-26b2fbd1e11b483aad4a891ac2256c20 |
institution | Directory Open Access Journal |
issn | 2041-1723 |
language | English |
last_indexed | 2024-03-09T15:03:43Z |
publishDate | 2023-11-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj.art-26b2fbd1e11b483aad4a891ac2256c202023-11-26T13:45:38ZengNature PortfolioNature Communications2041-17232023-11-0114111110.1038/s41467-023-43409-6A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acidLeiming Hu0Jacob A. Wrubel1Carlos M. Baez-Cotto2Fry Intia3Jae Hyung Park4Arthur Jeremy Kropf5Nancy Kariuki6Zhe Huang7Ahmed Farghaly8Lynda Amichi9Prantik Saha10Ling Tao11David A. Cullen12Deborah J. Myers13Magali S. Ferrandon14K. C. Neyerlin15Chemistry and Nanoscience Center, National Renewable Energy LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryMaterials Science Center, National Renewable Energy LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryCatalytic Carbon Transformation & Scale-Up Center, National Renewable Energy LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryCatalytic Carbon Transformation & Scale-Up Center, National Renewable Energy LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryAbstract The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H2 electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm2 in a 25 cm2 cell. More critically, a 55-hour stability test at 200 mA/cm2 shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods.https://doi.org/10.1038/s41467-023-43409-6 |
spellingShingle | Leiming Hu Jacob A. Wrubel Carlos M. Baez-Cotto Fry Intia Jae Hyung Park Arthur Jeremy Kropf Nancy Kariuki Zhe Huang Ahmed Farghaly Lynda Amichi Prantik Saha Ling Tao David A. Cullen Deborah J. Myers Magali S. Ferrandon K. C. Neyerlin A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid Nature Communications |
title | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid |
title_full | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid |
title_fullStr | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid |
title_full_unstemmed | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid |
title_short | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid |
title_sort | scalable membrane electrode assembly architecture for efficient electrochemical conversion of co2 to formic acid |
url | https://doi.org/10.1038/s41467-023-43409-6 |
work_keys_str_mv | AT leiminghu ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT jacobawrubel ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT carlosmbaezcotto ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT fryintia ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT jaehyungpark ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT arthurjeremykropf ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT nancykariuki ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT zhehuang ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT ahmedfarghaly ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT lyndaamichi ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT prantiksaha ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT lingtao ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT davidacullen ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT deborahjmyers ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT magalisferrandon ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT kcneyerlin ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT leiminghu scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT jacobawrubel scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT carlosmbaezcotto scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT fryintia scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT jaehyungpark scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT arthurjeremykropf scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT nancykariuki scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT zhehuang scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT ahmedfarghaly scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT lyndaamichi scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT prantiksaha scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT lingtao scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT davidacullen scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT deborahjmyers scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT magalisferrandon scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT kcneyerlin scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid |