A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid

Abstract The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthes...

Full description

Bibliographic Details
Main Authors: Leiming Hu, Jacob A. Wrubel, Carlos M. Baez-Cotto, Fry Intia, Jae Hyung Park, Arthur Jeremy Kropf, Nancy Kariuki, Zhe Huang, Ahmed Farghaly, Lynda Amichi, Prantik Saha, Ling Tao, David A. Cullen, Deborah J. Myers, Magali S. Ferrandon, K. C. Neyerlin
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-43409-6
_version_ 1827633738966630400
author Leiming Hu
Jacob A. Wrubel
Carlos M. Baez-Cotto
Fry Intia
Jae Hyung Park
Arthur Jeremy Kropf
Nancy Kariuki
Zhe Huang
Ahmed Farghaly
Lynda Amichi
Prantik Saha
Ling Tao
David A. Cullen
Deborah J. Myers
Magali S. Ferrandon
K. C. Neyerlin
author_facet Leiming Hu
Jacob A. Wrubel
Carlos M. Baez-Cotto
Fry Intia
Jae Hyung Park
Arthur Jeremy Kropf
Nancy Kariuki
Zhe Huang
Ahmed Farghaly
Lynda Amichi
Prantik Saha
Ling Tao
David A. Cullen
Deborah J. Myers
Magali S. Ferrandon
K. C. Neyerlin
author_sort Leiming Hu
collection DOAJ
description Abstract The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H2 electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm2 in a 25 cm2 cell. More critically, a 55-hour stability test at 200 mA/cm2 shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods.
first_indexed 2024-03-09T15:03:43Z
format Article
id doaj.art-26b2fbd1e11b483aad4a891ac2256c20
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-09T15:03:43Z
publishDate 2023-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-26b2fbd1e11b483aad4a891ac2256c202023-11-26T13:45:38ZengNature PortfolioNature Communications2041-17232023-11-0114111110.1038/s41467-023-43409-6A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acidLeiming Hu0Jacob A. Wrubel1Carlos M. Baez-Cotto2Fry Intia3Jae Hyung Park4Arthur Jeremy Kropf5Nancy Kariuki6Zhe Huang7Ahmed Farghaly8Lynda Amichi9Prantik Saha10Ling Tao11David A. Cullen12Deborah J. Myers13Magali S. Ferrandon14K. C. Neyerlin15Chemistry and Nanoscience Center, National Renewable Energy LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryMaterials Science Center, National Renewable Energy LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryCatalytic Carbon Transformation & Scale-Up Center, National Renewable Energy LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryCatalytic Carbon Transformation & Scale-Up Center, National Renewable Energy LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemical Sciences and Engineering Division, Argonne National LaboratoryChemistry and Nanoscience Center, National Renewable Energy LaboratoryAbstract The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H2 electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm2 in a 25 cm2 cell. More critically, a 55-hour stability test at 200 mA/cm2 shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods.https://doi.org/10.1038/s41467-023-43409-6
spellingShingle Leiming Hu
Jacob A. Wrubel
Carlos M. Baez-Cotto
Fry Intia
Jae Hyung Park
Arthur Jeremy Kropf
Nancy Kariuki
Zhe Huang
Ahmed Farghaly
Lynda Amichi
Prantik Saha
Ling Tao
David A. Cullen
Deborah J. Myers
Magali S. Ferrandon
K. C. Neyerlin
A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
Nature Communications
title A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
title_full A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
title_fullStr A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
title_full_unstemmed A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
title_short A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
title_sort scalable membrane electrode assembly architecture for efficient electrochemical conversion of co2 to formic acid
url https://doi.org/10.1038/s41467-023-43409-6
work_keys_str_mv AT leiminghu ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT jacobawrubel ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT carlosmbaezcotto ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT fryintia ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT jaehyungpark ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT arthurjeremykropf ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT nancykariuki ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT zhehuang ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT ahmedfarghaly ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT lyndaamichi ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT prantiksaha ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT lingtao ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT davidacullen ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT deborahjmyers ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT magalisferrandon ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT kcneyerlin ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT leiminghu scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT jacobawrubel scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT carlosmbaezcotto scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT fryintia scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT jaehyungpark scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT arthurjeremykropf scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT nancykariuki scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT zhehuang scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT ahmedfarghaly scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT lyndaamichi scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT prantiksaha scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT lingtao scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT davidacullen scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT deborahjmyers scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT magalisferrandon scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT kcneyerlin scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid