A New Invention Method to Determine the Reduction Factor for Low Fabric Tension Properties for Head Garment Fabrication
This paper proposes a new method to determine the reduction factor for producing a head garment with specified targeted pressure output. Pressure garment fabric mostly supplied to the local hospitals with no information of the material properties and the fabrication method generally used a single re...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/matecconf/20167801012 |
Summary: | This paper proposes a new method to determine the reduction factor for producing a head garment with specified targeted pressure output. Pressure garment fabric mostly supplied to the local hospitals with no information of the material properties and the fabrication method generally used a single reduction factor at various body segments. Reduction factor defined as the percentage of reducing the garment size from the original circumference of the body part which contributes to the compression. The objective of this study is to compare the fabrication method of head garment using reduction factor equation from previous research with the new proposed method. The equation to predict the reduction factor requires the parameter of the fabric tension which is obtained from tensile test and radius of curvature of the human body parts. In the new proposed method, a 3D scanning was used for data acquisition to obtain the geometry of the head area. The pressure outputs are measured by a pressure measurement system developed from Flexiforce sensor and Arduino circuit board. By using the equation, the result shows the calculated reduction factor produced an extremely tight head garment compared to the conducted experiments which manage to produce an adequate reduction factor with a targeted pressure output of 20mmHg. The result of the experiment indicates that the reduction factor ranging from 17% to 23% compared to the equation which produces 20% to 47% of reduction factor. As an additional, the proposed experimental method can be used for different type of pressure garment fabrics in order to obtain the relationship between the reduction factor and the circumference of the body parts. |
---|---|
ISSN: | 2261-236X |