Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset

In the context of global change, up-to-date land use land cover (LULC) maps is a major challenge to assess pressures on natural areas. These maps also allow us to assess the evolution of land cover and to quantify changes over time (such as urban sprawl), which is essential for having a precise unde...

Full description

Bibliographic Details
Main Authors: Romain Wenger, Anne Puissant, Jonathan Weber, Lhassane Idoumghar, Germain Forestier
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/1/151
_version_ 1797431266114535424
author Romain Wenger
Anne Puissant
Jonathan Weber
Lhassane Idoumghar
Germain Forestier
author_facet Romain Wenger
Anne Puissant
Jonathan Weber
Lhassane Idoumghar
Germain Forestier
author_sort Romain Wenger
collection DOAJ
description In the context of global change, up-to-date land use land cover (LULC) maps is a major challenge to assess pressures on natural areas. These maps also allow us to assess the evolution of land cover and to quantify changes over time (such as urban sprawl), which is essential for having a precise understanding of a given territory. Few studies have combined information from Sentinel-1 and Sentinel-2 imagery, but merging radar and optical imagery has been shown to have several benefits for a range of study cases, such as semantic segmentation or classification. For this study, we used a newly produced dataset, MultiSenGE, which provides a set of multitemporal and multimodal patches over the Grand-Est region in France. To merge these data, we propose a CNN approach based on spatio-temporal and spatio-spectral feature fusion, ConvLSTM+Inception-S1S2. We used a U-Net base model and ConvLSTM extractor for spatio-temporal features and an inception module for the spatio-spectral features extractor. The results show that describing an overrepresented class is preferable to map urban fabrics (UF). Furthermore, the addition of an Inception module on a date allowing the extraction of spatio-spectral features improves the classification results. Spatio-spectro-temporal method (ConvLSTM+Inception-S1S2) achieves higher global weighted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msub><mn>1</mn><mrow><mi>S</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></mrow></semantics></math></inline-formula> than all other methods tested.
first_indexed 2024-03-09T09:41:26Z
format Article
id doaj.art-26b85946bfee45dd8e6351de8d3b6177
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T09:41:26Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-26b85946bfee45dd8e6351de8d3b61772023-12-02T00:51:17ZengMDPI AGRemote Sensing2072-42922022-12-0115115110.3390/rs15010151Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE DatasetRomain Wenger0Anne Puissant1Jonathan Weber2Lhassane Idoumghar3Germain Forestier4LIVE UMR 7362 CNRS, University of Strasbourg, F-67000 Strasbourg, FranceLIVE UMR 7362 CNRS, University of Strasbourg, F-67000 Strasbourg, FranceIRIMAS UR 7499, University of Haute-Alsace, F-68100 Mulhouse, FranceIRIMAS UR 7499, University of Haute-Alsace, F-68100 Mulhouse, FranceIRIMAS UR 7499, University of Haute-Alsace, F-68100 Mulhouse, FranceIn the context of global change, up-to-date land use land cover (LULC) maps is a major challenge to assess pressures on natural areas. These maps also allow us to assess the evolution of land cover and to quantify changes over time (such as urban sprawl), which is essential for having a precise understanding of a given territory. Few studies have combined information from Sentinel-1 and Sentinel-2 imagery, but merging radar and optical imagery has been shown to have several benefits for a range of study cases, such as semantic segmentation or classification. For this study, we used a newly produced dataset, MultiSenGE, which provides a set of multitemporal and multimodal patches over the Grand-Est region in France. To merge these data, we propose a CNN approach based on spatio-temporal and spatio-spectral feature fusion, ConvLSTM+Inception-S1S2. We used a U-Net base model and ConvLSTM extractor for spatio-temporal features and an inception module for the spatio-spectral features extractor. The results show that describing an overrepresented class is preferable to map urban fabrics (UF). Furthermore, the addition of an Inception module on a date allowing the extraction of spatio-spectral features improves the classification results. Spatio-spectro-temporal method (ConvLSTM+Inception-S1S2) achieves higher global weighted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msub><mn>1</mn><mrow><mi>S</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></mrow></semantics></math></inline-formula> than all other methods tested.https://www.mdpi.com/2072-4292/15/1/151multitemporalmultimodalSentinel-1Sentinel-2land useland cover
spellingShingle Romain Wenger
Anne Puissant
Jonathan Weber
Lhassane Idoumghar
Germain Forestier
Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset
Remote Sensing
multitemporal
multimodal
Sentinel-1
Sentinel-2
land use
land cover
title Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset
title_full Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset
title_fullStr Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset
title_full_unstemmed Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset
title_short Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset
title_sort multimodal and multitemporal land use land cover semantic segmentation on sentinel 1 and sentinel 2 imagery an application on a multisenge dataset
topic multitemporal
multimodal
Sentinel-1
Sentinel-2
land use
land cover
url https://www.mdpi.com/2072-4292/15/1/151
work_keys_str_mv AT romainwenger multimodalandmultitemporallanduselandcoversemanticsegmentationonsentinel1andsentinel2imageryanapplicationonamultisengedataset
AT annepuissant multimodalandmultitemporallanduselandcoversemanticsegmentationonsentinel1andsentinel2imageryanapplicationonamultisengedataset
AT jonathanweber multimodalandmultitemporallanduselandcoversemanticsegmentationonsentinel1andsentinel2imageryanapplicationonamultisengedataset
AT lhassaneidoumghar multimodalandmultitemporallanduselandcoversemanticsegmentationonsentinel1andsentinel2imageryanapplicationonamultisengedataset
AT germainforestier multimodalandmultitemporallanduselandcoversemanticsegmentationonsentinel1andsentinel2imageryanapplicationonamultisengedataset