KilonovAE: Exploring Kilonova Spectral Features with Autoencoders

Kilonovae are likely a key site of heavy r -process element production in the Universe, and their optical/infrared spectra contain insights into both the properties of the ejecta and the conditions of the r -process. However, the event GW170817/AT2017gfo is the only kilonova so far with well-observe...

Full description

Bibliographic Details
Main Authors: N. M. Ford, Nicholas Vieira, John J. Ruan, Daryl Haggard
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/ad0b7d
_version_ 1797352213378498560
author N. M. Ford
Nicholas Vieira
John J. Ruan
Daryl Haggard
author_facet N. M. Ford
Nicholas Vieira
John J. Ruan
Daryl Haggard
author_sort N. M. Ford
collection DOAJ
description Kilonovae are likely a key site of heavy r -process element production in the Universe, and their optical/infrared spectra contain insights into both the properties of the ejecta and the conditions of the r -process. However, the event GW170817/AT2017gfo is the only kilonova so far with well-observed spectra. To understand the diversity of absorption features that might be observed in future kilonovae spectra, we use the TARDIS Monte Carlo radiative transfer code to simulate a suite of optical spectra spanning a wide range of kilonova ejecta properties and r -process abundance patterns. To identify the most common and prominent absorption lines, we perform dimensionality reduction using an autoencoder, and we find spectra clusters in the latent space representation using a Bayesian Gaussian Mixture model. Our synthetic kilonovae spectra commonly display strong absorption by strontium _38 Sr ii , yttrium _38 Y ii , and zirconium _40 Zr i–ii , with strong lanthanide contributions at low electron fractions ( Y _e ≲ 0.25). When a new kilonova is observed, our machine-learning framework will provide context on the dominant absorption lines and key ejecta properties, helping to determine where this event falls within the larger “zoo” of kilonovae spectra.
first_indexed 2024-03-08T13:13:04Z
format Article
id doaj.art-26bb6e326c48484688736f3e8ec5c78a
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-08T13:13:04Z
publishDate 2024-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-26bb6e326c48484688736f3e8ec5c78a2024-01-18T10:40:56ZengIOP PublishingThe Astrophysical Journal1538-43572024-01-01961111910.3847/1538-4357/ad0b7dKilonovAE: Exploring Kilonova Spectral Features with AutoencodersN. M. Ford0https://orcid.org/0000-0001-8921-3624Nicholas Vieira1https://orcid.org/0000-0001-7815-7604John J. Ruan2https://orcid.org/0000-0001-8665-5523Daryl Haggard3https://orcid.org/0000-0001-6803-2138Department of Physics, McGill University , 3600 rue University, Montreal, Québec, H3A 2T8, Canada ; nicole.ford@mail.mcgill.ca; Trottier Space Institute, 3550 Rue University , Montréal, Québec, H3A 2A7, CanadaDepartment of Physics, McGill University , 3600 rue University, Montreal, Québec, H3A 2T8, Canada ; nicole.ford@mail.mcgill.ca; Trottier Space Institute, 3550 Rue University , Montréal, Québec, H3A 2A7, CanadaDepartment of Physics and Astronomy, Bishop's University , 2600 rue College, Sherbrooke, Québec, J1M 1Z7, CanadaDepartment of Physics, McGill University , 3600 rue University, Montreal, Québec, H3A 2T8, Canada ; nicole.ford@mail.mcgill.ca; Trottier Space Institute, 3550 Rue University , Montréal, Québec, H3A 2A7, CanadaKilonovae are likely a key site of heavy r -process element production in the Universe, and their optical/infrared spectra contain insights into both the properties of the ejecta and the conditions of the r -process. However, the event GW170817/AT2017gfo is the only kilonova so far with well-observed spectra. To understand the diversity of absorption features that might be observed in future kilonovae spectra, we use the TARDIS Monte Carlo radiative transfer code to simulate a suite of optical spectra spanning a wide range of kilonova ejecta properties and r -process abundance patterns. To identify the most common and prominent absorption lines, we perform dimensionality reduction using an autoencoder, and we find spectra clusters in the latent space representation using a Bayesian Gaussian Mixture model. Our synthetic kilonovae spectra commonly display strong absorption by strontium _38 Sr ii , yttrium _38 Y ii , and zirconium _40 Zr i–ii , with strong lanthanide contributions at low electron fractions ( Y _e ≲ 0.25). When a new kilonova is observed, our machine-learning framework will provide context on the dominant absorption lines and key ejecta properties, helping to determine where this event falls within the larger “zoo” of kilonovae spectra.https://doi.org/10.3847/1538-4357/ad0b7dNeutron starsR-processRadiative transfer simulationsSpectral line identificationDimensionality reduction
spellingShingle N. M. Ford
Nicholas Vieira
John J. Ruan
Daryl Haggard
KilonovAE: Exploring Kilonova Spectral Features with Autoencoders
The Astrophysical Journal
Neutron stars
R-process
Radiative transfer simulations
Spectral line identification
Dimensionality reduction
title KilonovAE: Exploring Kilonova Spectral Features with Autoencoders
title_full KilonovAE: Exploring Kilonova Spectral Features with Autoencoders
title_fullStr KilonovAE: Exploring Kilonova Spectral Features with Autoencoders
title_full_unstemmed KilonovAE: Exploring Kilonova Spectral Features with Autoencoders
title_short KilonovAE: Exploring Kilonova Spectral Features with Autoencoders
title_sort kilonovae exploring kilonova spectral features with autoencoders
topic Neutron stars
R-process
Radiative transfer simulations
Spectral line identification
Dimensionality reduction
url https://doi.org/10.3847/1538-4357/ad0b7d
work_keys_str_mv AT nmford kilonovaeexploringkilonovaspectralfeatureswithautoencoders
AT nicholasvieira kilonovaeexploringkilonovaspectralfeatureswithautoencoders
AT johnjruan kilonovaeexploringkilonovaspectralfeatureswithautoencoders
AT darylhaggard kilonovaeexploringkilonovaspectralfeatureswithautoencoders