Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative Variables
Traditional chemical methods for testing the fat content of millet, a widely consumed grain, are time-consuming and costly. In this study, we developed a low-cost and rapid method for fat detection and quantification in millet. A miniature NIR spectrometer connected to a smartphone was used to colle...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-06-01
|
Series: | Foods |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-8158/11/13/1841 |
_version_ | 1827654840563531776 |
---|---|
author | Fuxiang Wang Chunguang Wang Shiyong Song |
author_facet | Fuxiang Wang Chunguang Wang Shiyong Song |
author_sort | Fuxiang Wang |
collection | DOAJ |
description | Traditional chemical methods for testing the fat content of millet, a widely consumed grain, are time-consuming and costly. In this study, we developed a low-cost and rapid method for fat detection and quantification in millet. A miniature NIR spectrometer connected to a smartphone was used to collect spectral data from millet samples of different origins. The standard normal variate (SNV) and first derivative (1D) methods were used to preprocess spectral signals. Variable selection methods, including bootstrapping soft shrinkage (BOSS), the variable iterative space shrinkage approach (VISSA), iteratively retaining informative variables (IRIV), iteratively variable subset optimization (IVSO), and competitive adaptive reweighted sampling (CARS), were used to select characteristic wavelengths. The partial least squares regression (PLSR) algorithm was employed to develop the regression models aimed at predicting the fat content in millet. The results showed that the proposed 1D-IRIV-PLSR model achieved optimal accuracy for fat detection, with a correlation coefficient for prediction (Rp) of 0.953, a root mean square error for prediction (RMSEP) of 0.301 g/100 g, and a residual predictive deviation (RPD) of 3.225, by using only 18 characteristic wavelengths. This result highlights the feasibility of using this low-cost and high-portability assessment tool for millet quality testing, which provides an optional solution for in situ inspection of millet quality in different scenarios, such as production lines or sales stores. |
first_indexed | 2024-03-09T21:54:29Z |
format | Article |
id | doaj.art-26cca4a5c972417bbadae13ece98b890 |
institution | Directory Open Access Journal |
issn | 2304-8158 |
language | English |
last_indexed | 2024-03-09T21:54:29Z |
publishDate | 2022-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Foods |
spelling | doaj.art-26cca4a5c972417bbadae13ece98b8902023-11-23T20:00:04ZengMDPI AGFoods2304-81582022-06-011113184110.3390/foods11131841Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative VariablesFuxiang Wang0Chunguang Wang1Shiyong Song2School of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010000, ChinaSchool of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010000, ChinaMongolia Lvtao Detection Technology Company Limited, Hohhot 010000, ChinaTraditional chemical methods for testing the fat content of millet, a widely consumed grain, are time-consuming and costly. In this study, we developed a low-cost and rapid method for fat detection and quantification in millet. A miniature NIR spectrometer connected to a smartphone was used to collect spectral data from millet samples of different origins. The standard normal variate (SNV) and first derivative (1D) methods were used to preprocess spectral signals. Variable selection methods, including bootstrapping soft shrinkage (BOSS), the variable iterative space shrinkage approach (VISSA), iteratively retaining informative variables (IRIV), iteratively variable subset optimization (IVSO), and competitive adaptive reweighted sampling (CARS), were used to select characteristic wavelengths. The partial least squares regression (PLSR) algorithm was employed to develop the regression models aimed at predicting the fat content in millet. The results showed that the proposed 1D-IRIV-PLSR model achieved optimal accuracy for fat detection, with a correlation coefficient for prediction (Rp) of 0.953, a root mean square error for prediction (RMSEP) of 0.301 g/100 g, and a residual predictive deviation (RPD) of 3.225, by using only 18 characteristic wavelengths. This result highlights the feasibility of using this low-cost and high-portability assessment tool for millet quality testing, which provides an optional solution for in situ inspection of millet quality in different scenarios, such as production lines or sales stores.https://www.mdpi.com/2304-8158/11/13/1841miniature near-infrared spectroscopyfoxtail milletfat contentprediction model |
spellingShingle | Fuxiang Wang Chunguang Wang Shiyong Song Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative Variables Foods miniature near-infrared spectroscopy foxtail millet fat content prediction model |
title | Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative Variables |
title_full | Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative Variables |
title_fullStr | Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative Variables |
title_full_unstemmed | Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative Variables |
title_short | Rapid and Low-Cost Detection of Millet Quality by Miniature Near-Infrared Spectroscopy and Iteratively Retaining Informative Variables |
title_sort | rapid and low cost detection of millet quality by miniature near infrared spectroscopy and iteratively retaining informative variables |
topic | miniature near-infrared spectroscopy foxtail millet fat content prediction model |
url | https://www.mdpi.com/2304-8158/11/13/1841 |
work_keys_str_mv | AT fuxiangwang rapidandlowcostdetectionofmilletqualitybyminiaturenearinfraredspectroscopyanditerativelyretaininginformativevariables AT chunguangwang rapidandlowcostdetectionofmilletqualitybyminiaturenearinfraredspectroscopyanditerativelyretaininginformativevariables AT shiyongsong rapidandlowcostdetectionofmilletqualitybyminiaturenearinfraredspectroscopyanditerativelyretaininginformativevariables |