Memantine Protects From Exacerbation of Ischemic Stroke and Blood Brain Barrier Disruption in Mild But Not Severe Hyperhomocysteinemia

Background Hyperhomocysteinemia is a risk factor for ischemic stroke; however, a targeted treatment strategy is lacking partly because of limited understanding of the causal role of homocysteine in cerebrovascular pathogenesis. Methods and Results In a genetic model of cystathionine beta synthase (C...

Full description

Bibliographic Details
Main Authors: Sean X. Gu, Vijay K. Sonkar, Parmeshwar B. Katare, Rahul Kumar, Warren D. Kruger, Erland Arning, Teodoro Bottiglieri, Steven R. Lentz, Sanjana Dayal
Format: Article
Language:English
Published: Wiley 2020-02-01
Series:Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
Subjects:
Online Access:https://www.ahajournals.org/doi/10.1161/JAHA.119.013368
Description
Summary:Background Hyperhomocysteinemia is a risk factor for ischemic stroke; however, a targeted treatment strategy is lacking partly because of limited understanding of the causal role of homocysteine in cerebrovascular pathogenesis. Methods and Results In a genetic model of cystathionine beta synthase (CBS) deficiency, we tested the hypothesis that elevation in plasma total homocysteine exacerbates cerebrovascular injury and that memantine, a N‐methyl‐D‐aspartate receptor antagonist, is protective. Mild or severe elevation in plasma total homocysteine was observed in Cbs+/− (6.1±0.3 μmol/L) or Cbs−/− (309±18 μmol/L) mice versus Cbs+/+ (3.1±0.6 μmol/L) mice. Surprisingly, Cbs−/− and Cbs+/− mice exhibited similar increases in cerebral infarct size following middle cerebral artery ischemia/reperfusion injury, despite the much higher total homocysteine levels in Cbs−/− mice. Likewise, disruption of the blood brain barrier was observed in both Cbs+/− and Cbs−/− mice. Administration of the N‐methyl‐D‐aspartate receptor antagonist memantine protected Cbs+/− but not Cbs−/− mice from cerebral infarction and blood brain barrier disruption. Our data suggest that the differential effect of memantine in Cbs+/− versus Cbs−/− mice may be related to changes in expression of N‐methyl‐D‐aspartate receptor subunits. Cbs−/−, but not Cbs+/− mice had increased expression of NR2B subunit, which is known to be relatively insensitive to homocysteine. Conclusions These data provide experimental evidence that even a mild increase in plasma total homocysteine can exacerbate cerebrovascular injury and suggest that N‐methyl‐D‐aspartate receptor antagonism may represent a strategy to prevent reperfusion injury after acute ischemic stroke in patients with mild hyperhomocysteinemia.
ISSN:2047-9980