Simple modules over Auslander regular rings

In this paper, we discuss the properties of simple modules over Auslander regular rings with global dimension at most 3. Using grade theory, we show the right projective dimension of ExtΛ1(S,Λ)$\begin{array}{} \text{Ext}_{{\it\Lambda}}^{1}(S,\ {\it\Lambda}) \end{array} $ is equal to 1 for any simpl...

Full description

Bibliographic Details
Main Authors: Huang Chonghui, Zheng Lijing
Format: Article
Language:English
Published: De Gruyter 2017-12-01
Series:Open Mathematics
Subjects:
Online Access:http://www.degruyter.com/view/j/math.2017.15.issue-1/math-2017-0138/math-2017-0138.xml?format=INT
_version_ 1818517232846635008
author Huang Chonghui
Zheng Lijing
author_facet Huang Chonghui
Zheng Lijing
author_sort Huang Chonghui
collection DOAJ
description In this paper, we discuss the properties of simple modules over Auslander regular rings with global dimension at most 3. Using grade theory, we show the right projective dimension of ExtΛ1(S,Λ)$\begin{array}{} \text{Ext}_{{\it\Lambda}}^{1}(S,\ {\it\Lambda}) \end{array} $ is equal to 1 for any simple Λ-module S with gr S = 1. As a result, we give some equivalent characterization of diagonal Auslander regular rings.
first_indexed 2024-12-11T00:53:29Z
format Article
id doaj.art-26ddde3688104d3e96ce97d90a88c3bc
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-11T00:53:29Z
publishDate 2017-12-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-26ddde3688104d3e96ce97d90a88c3bc2022-12-22T01:26:33ZengDe GruyterOpen Mathematics2391-54552017-12-011511618162210.1515/math-2017-0138math-2017-0138Simple modules over Auslander regular ringsHuang Chonghui0Zheng Lijing1College of Mathematics and Physics, University of South China, Hengyang421001, ChinaCollege of Mathematics and Physics, University of South China, Hengyang421001, ChinaIn this paper, we discuss the properties of simple modules over Auslander regular rings with global dimension at most 3. Using grade theory, we show the right projective dimension of ExtΛ1(S,Λ)$\begin{array}{} \text{Ext}_{{\it\Lambda}}^{1}(S,\ {\it\Lambda}) \end{array} $ is equal to 1 for any simple Λ-module S with gr S = 1. As a result, we give some equivalent characterization of diagonal Auslander regular rings.http://www.degruyter.com/view/j/math.2017.15.issue-1/math-2017-0138/math-2017-0138.xml?format=INTauslander regular ringdiagonal ringsimple modulegrade16e0516e10
spellingShingle Huang Chonghui
Zheng Lijing
Simple modules over Auslander regular rings
Open Mathematics
auslander regular ring
diagonal ring
simple module
grade
16e05
16e10
title Simple modules over Auslander regular rings
title_full Simple modules over Auslander regular rings
title_fullStr Simple modules over Auslander regular rings
title_full_unstemmed Simple modules over Auslander regular rings
title_short Simple modules over Auslander regular rings
title_sort simple modules over auslander regular rings
topic auslander regular ring
diagonal ring
simple module
grade
16e05
16e10
url http://www.degruyter.com/view/j/math.2017.15.issue-1/math-2017-0138/math-2017-0138.xml?format=INT
work_keys_str_mv AT huangchonghui simplemodulesoverauslanderregularrings
AT zhenglijing simplemodulesoverauslanderregularrings