$m$-quasi-$*$-Einstein contact metric manifolds

The goal of this article is to introduce and study the characterstics of $m$-quasi-$*$-Einstein metric on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient $m$-quasi-$*$-Einstein metric, then $M$ is $\eta$-Einstein and $f$ is constant. Next, we show that in...

Full description

Bibliographic Details
Main Authors: H.A. Kumara, V. Venkatesha, D.M. Naik
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2022-04-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/4736
_version_ 1797205781349662720
author H.A. Kumara
V. Venkatesha
D.M. Naik
author_facet H.A. Kumara
V. Venkatesha
D.M. Naik
author_sort H.A. Kumara
collection DOAJ
description The goal of this article is to introduce and study the characterstics of $m$-quasi-$*$-Einstein metric on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient $m$-quasi-$*$-Einstein metric, then $M$ is $\eta$-Einstein and $f$ is constant. Next, we show that in a Sasakian manifold if $g$ represents an $m$-quasi-$*$-Einstein metric with a conformal vector field $V$, then $V$ is Killing and $M$ is $\eta$-Einstein. Finally, we prove that if a non-Sasakian $(\kappa,\mu)$-contact manifold admits a gradient $m$-quasi-$*$-Einstein metric, then it is $N(\kappa)$-contact metric manifold or a $*$-Einstein.
first_indexed 2024-04-24T08:56:34Z
format Article
id doaj.art-26de9846c2dc428c9df84db90643521d
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:56:34Z
publishDate 2022-04-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-26de9846c2dc428c9df84db90643521d2024-04-16T07:10:59ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102022-04-01141617110.15330/cmp.14.1.61-714128$m$-quasi-$*$-Einstein contact metric manifoldsH.A. Kumara0https://orcid.org/0000-0002-4714-3063V. Venkatesha1https://orcid.org/0000-0002-2799-2535D.M. Naik2Kuvempu University, Shankaraghatta, 577451, Karnataka, IndiaKuvempu University, Shankaraghatta, 577451, Karnataka, IndiaCHRIST (Deemed to be University), Bangalore, 560029, Karnataka, IndiaThe goal of this article is to introduce and study the characterstics of $m$-quasi-$*$-Einstein metric on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient $m$-quasi-$*$-Einstein metric, then $M$ is $\eta$-Einstein and $f$ is constant. Next, we show that in a Sasakian manifold if $g$ represents an $m$-quasi-$*$-Einstein metric with a conformal vector field $V$, then $V$ is Killing and $M$ is $\eta$-Einstein. Finally, we prove that if a non-Sasakian $(\kappa,\mu)$-contact manifold admits a gradient $m$-quasi-$*$-Einstein metric, then it is $N(\kappa)$-contact metric manifold or a $*$-Einstein.https://journals.pnu.edu.ua/index.php/cmp/article/view/4736$*$-ricci soliton$m$-quasi-$*$-einstein metricsasakian manifold$(\kappa,\mu)$-contact manifold
spellingShingle H.A. Kumara
V. Venkatesha
D.M. Naik
$m$-quasi-$*$-Einstein contact metric manifolds
Karpatsʹkì Matematičnì Publìkacìï
$*$-ricci soliton
$m$-quasi-$*$-einstein metric
sasakian manifold
$(\kappa,\mu)$-contact manifold
title $m$-quasi-$*$-Einstein contact metric manifolds
title_full $m$-quasi-$*$-Einstein contact metric manifolds
title_fullStr $m$-quasi-$*$-Einstein contact metric manifolds
title_full_unstemmed $m$-quasi-$*$-Einstein contact metric manifolds
title_short $m$-quasi-$*$-Einstein contact metric manifolds
title_sort m quasi einstein contact metric manifolds
topic $*$-ricci soliton
$m$-quasi-$*$-einstein metric
sasakian manifold
$(\kappa,\mu)$-contact manifold
url https://journals.pnu.edu.ua/index.php/cmp/article/view/4736
work_keys_str_mv AT hakumara mquasieinsteincontactmetricmanifolds
AT vvenkatesha mquasieinsteincontactmetricmanifolds
AT dmnaik mquasieinsteincontactmetricmanifolds