Parameter Identification for Thermo-Mechanical Constitutive Modeling to Describe Process-Induced Residual Stresses and Phase Transformations in Low-Carbon Steels

Reinforcing steel bars (rebars) are widely manufactured using the Tempcore™ process. Several studies have been conducted analyzing the effect of the heat treatment route on the strength and corrosion resistance of rebars, but knowledge of its effects on the residual stresses of the finished product...

Full description

Bibliographic Details
Main Authors: Muhammed Zubair Shahul Hameed, Christoph Hubertus Wölfle, Tobias Robl, Thomas Obermayer, Stefan Rappl, Kai Osterminski, Christian Krempaszky, Ewald Werner
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/2/550
Description
Summary:Reinforcing steel bars (rebars) are widely manufactured using the Tempcore™ process. Several studies have been conducted analyzing the effect of the heat treatment route on the strength and corrosion resistance of rebars, but knowledge of its effects on the residual stresses of the finished product are largely lacking. This paper presents experimental investigations to identify the material parameters necessary to simulate the Tempcore™ process using thermo-elasto-plastic constitutive modeling in order to study the generation of residual stresses during the manufacturing process. Mechanical parameters such as yield strength at elevated temperatures and elastic constants were determined experimentally. A continuous cooling transformation diagram needed to model the phase transformations was also identified and is presented here. Residual stress distributions in the surface region of the rebar were characterized using X-ray diffraction. Further characterizations of microstructure, chemical composition, and hardness were carried out. The constitutive modeling approach for the numerical simulation is briefly described for which the experimentally determined parameters are required as input.
ISSN:2076-3417