Development of a Trajectory Period Folding Method for Burnup Calculations

In this paper, we present a trajectory period folding method for numerical modelling of nuclear transformations. The method uses the linear chain method, commonly applied for modelling of isotopic changes in matter. The developed method folds two consecutive periods of time and forms linear chain re...

Full description

Bibliographic Details
Main Authors: Przemysław Stanisz, Mikołaj Oettingen, Jerzy Cetnar
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/6/2245
Description
Summary:In this paper, we present a trajectory period folding method for numerical modelling of nuclear transformations. The method uses the linear chain method, commonly applied for modelling of isotopic changes in matter. The developed method folds two consecutive periods of time and forms linear chain representations. In the same way as in the linear chain method, the mass flow of straight nuclide-to-nuclide transitions following the formation of nuclide transmutation chains in every step is considered over the total period of interest. Therefore, all quantitative data about the isotopic transformations for the period beyond a particular calculation step are preserved. Moreover, it is possible to investigate the formation history of any isotope from the beginning of irradiation to the arbitrary time step, including cooling periods and multi-recycling for any designed nuclear fuel cycle. We present a case study for the transition from <sup>238</sup>U to <sup>239</sup>Pu and define the properties of the developed method and its possible applications in reactor physics calculations.
ISSN:1996-1073