Learning Latent Jet Structure

We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Alloca...

Full description

Bibliographic Details
Main Authors: Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Manuel Szewc
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1167
Description
Summary:We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mover><mi>t</mi><mo>¯</mo></mover></mrow></semantics></math></inline-formula> jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.
ISSN:2073-8994