Learning Latent Jet Structure

We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Alloca...

Full description

Bibliographic Details
Main Authors: Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Manuel Szewc
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1167
_version_ 1797528378902839296
author Barry M. Dillon
Darius A. Faroughy
Jernej F. Kamenik
Manuel Szewc
author_facet Barry M. Dillon
Darius A. Faroughy
Jernej F. Kamenik
Manuel Szewc
author_sort Barry M. Dillon
collection DOAJ
description We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mover><mi>t</mi><mo>¯</mo></mover></mrow></semantics></math></inline-formula> jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.
first_indexed 2024-03-10T09:58:27Z
format Article
id doaj.art-26f7d9bc1ad6453bb60ea22fcee4953c
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T09:58:27Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-26f7d9bc1ad6453bb60ea22fcee4953c2023-11-22T02:08:28ZengMDPI AGSymmetry2073-89942021-06-01137116710.3390/sym13071167Learning Latent Jet StructureBarry M. Dillon0Darius A. Faroughy1Jernej F. Kamenik2Manuel Szewc3Institut fur Theoretische Physik, Universitat Heidelberg, 69120 Heidelberg, GermanyPhysik-Institut, Universitat Zurich, CH-8057 Zurich, SwitzerlandJozef Stefan Institute, Jamova 39, 1000 Ljubljana, SloveniaInternational Center for Advanced Studies (ICAS), UNSAM & CONICET 25 de Mayo y Francia, 1650 Buenos Aires, ArgentinaWe summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mover><mi>t</mi><mo>¯</mo></mover></mrow></semantics></math></inline-formula> jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.https://www.mdpi.com/2073-8994/13/7/1167QCDjet substructure analysisBayesian semi-supervised learning
spellingShingle Barry M. Dillon
Darius A. Faroughy
Jernej F. Kamenik
Manuel Szewc
Learning Latent Jet Structure
Symmetry
QCD
jet substructure analysis
Bayesian semi-supervised learning
title Learning Latent Jet Structure
title_full Learning Latent Jet Structure
title_fullStr Learning Latent Jet Structure
title_full_unstemmed Learning Latent Jet Structure
title_short Learning Latent Jet Structure
title_sort learning latent jet structure
topic QCD
jet substructure analysis
Bayesian semi-supervised learning
url https://www.mdpi.com/2073-8994/13/7/1167
work_keys_str_mv AT barrymdillon learninglatentjetstructure
AT dariusafaroughy learninglatentjetstructure
AT jernejfkamenik learninglatentjetstructure
AT manuelszewc learninglatentjetstructure