Machine learning enables design automation of microfluidic flow-focusing droplet generation

Devices for droplet generation are at the heart of many microfluidic applications but difficult to tailor for specific cases. Lashkaripour et al. show how design customization can greatly be simplified by combining rapid prototyping with data-driven machine learning strategies.

Bibliográfalaš dieđut
Váldodahkkit: Ali Lashkaripour, Christopher Rodriguez, Noushin Mehdipour, Rizki Mardian, David McIntyre, Luis Ortiz, Joshua Campbell, Douglas Densmore
Materiálatiipa: Artihkal
Giella:English
Almmustuhtton: Nature Portfolio 2021-01-01
Ráidu:Nature Communications
Liŋkkat:https://doi.org/10.1038/s41467-020-20284-z
Govvádus
Čoahkkáigeassu:Devices for droplet generation are at the heart of many microfluidic applications but difficult to tailor for specific cases. Lashkaripour et al. show how design customization can greatly be simplified by combining rapid prototyping with data-driven machine learning strategies.
ISSN:2041-1723