NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production...

Full description

Bibliographic Details
Main Authors: Kate E. Hawkins, Shona Joy, Juliette M.K.M. Delhove, Vassilios N. Kotiadis, Emilio Fernandez, Lorna M. Fitzpatrick, James R. Whiteford, Peter J. King, Juan P. Bolanos, Michael R. Duchen, Simon N. Waddington, Tristan R. McKay
Format: Article
Language:English
Published: Elsevier 2016-03-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124716300705
_version_ 1818955175648296960
author Kate E. Hawkins
Shona Joy
Juliette M.K.M. Delhove
Vassilios N. Kotiadis
Emilio Fernandez
Lorna M. Fitzpatrick
James R. Whiteford
Peter J. King
Juan P. Bolanos
Michael R. Duchen
Simon N. Waddington
Tristan R. McKay
author_facet Kate E. Hawkins
Shona Joy
Juliette M.K.M. Delhove
Vassilios N. Kotiadis
Emilio Fernandez
Lorna M. Fitzpatrick
James R. Whiteford
Peter J. King
Juan P. Bolanos
Michael R. Duchen
Simon N. Waddington
Tristan R. McKay
author_sort Kate E. Hawkins
collection DOAJ
description The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.
first_indexed 2024-12-20T10:33:53Z
format Article
id doaj.art-272ceabc933b4f23acf31d95556d9320
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-12-20T10:33:53Z
publishDate 2016-03-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-272ceabc933b4f23acf31d95556d93202022-12-21T19:43:39ZengElsevierCell Reports2211-12472016-03-011481883189110.1016/j.celrep.2016.02.003NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell ReprogrammingKate E. Hawkins0Shona Joy1Juliette M.K.M. Delhove2Vassilios N. Kotiadis3Emilio Fernandez4Lorna M. Fitzpatrick5James R. Whiteford6Peter J. King7Juan P. Bolanos8Michael R. Duchen9Simon N. Waddington10Tristan R. McKay11Stem Cell Group, Cardiovascular and Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UKStem Cell Group, Cardiovascular and Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UKStem Cell Group, Cardiovascular and Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UKDepartment of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UKInstitute of Functional Biology and Genomics, University of Salamanca-CSIC, 37007 Salamanca, SpainStem Cell Group, Cardiovascular and Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UKWilliam Harvey Research Institute, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UKWilliam Harvey Research Institute, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UKInstitute of Functional Biology and Genomics, University of Salamanca-CSIC, 37007 Salamanca, SpainDepartment of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UKWits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South AfricaStem Cell Group, Cardiovascular and Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UKThe potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.http://www.sciencedirect.com/science/article/pii/S2211124716300705
spellingShingle Kate E. Hawkins
Shona Joy
Juliette M.K.M. Delhove
Vassilios N. Kotiadis
Emilio Fernandez
Lorna M. Fitzpatrick
James R. Whiteford
Peter J. King
Juan P. Bolanos
Michael R. Duchen
Simon N. Waddington
Tristan R. McKay
NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
Cell Reports
title NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_full NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_fullStr NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_full_unstemmed NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_short NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_sort nrf2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming
url http://www.sciencedirect.com/science/article/pii/S2211124716300705
work_keys_str_mv AT kateehawkins nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT shonajoy nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT juliettemkmdelhove nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT vassiliosnkotiadis nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT emiliofernandez nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT lornamfitzpatrick nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT jamesrwhiteford nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT peterjking nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT juanpbolanos nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT michaelrduchen nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT simonnwaddington nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT tristanrmckay nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming