A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation

Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the s...

Full description

Bibliographic Details
Main Authors: André Dias, Anastasiia Lozovska, Filip J Wymeersch, Ana Nóvoa, Anahi Binagui-Casas, Daniel Sobral, Gabriel G Martins, Valerie Wilson, Moises Mallo
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2020-06-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/56615
_version_ 1817967833390252032
author André Dias
Anastasiia Lozovska
Filip J Wymeersch
Ana Nóvoa
Anahi Binagui-Casas
Daniel Sobral
Gabriel G Martins
Valerie Wilson
Moises Mallo
author_facet André Dias
Anastasiia Lozovska
Filip J Wymeersch
Ana Nóvoa
Anahi Binagui-Casas
Daniel Sobral
Gabriel G Martins
Valerie Wilson
Moises Mallo
author_sort André Dias
collection DOAJ
description Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.
first_indexed 2024-04-11T09:03:35Z
format Article
id doaj.art-2737e4e803004f67abc130ae14520e08
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-11T09:03:35Z
publishDate 2020-06-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-2737e4e803004f67abc130ae14520e082022-12-22T04:32:41ZengeLife Sciences Publications LtdeLife2050-084X2020-06-01910.7554/eLife.56615A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongationAndré Dias0https://orcid.org/0000-0003-3337-6373Anastasiia Lozovska1https://orcid.org/0000-0002-9842-6450Filip J Wymeersch2https://orcid.org/0000-0001-8999-4555Ana Nóvoa3https://orcid.org/0000-0002-5668-5630Anahi Binagui-Casas4https://orcid.org/0000-0002-7987-9286Daniel Sobral5https://orcid.org/0000-0003-3955-0117Gabriel G Martins6https://orcid.org/0000-0002-6506-9776Valerie Wilson7https://orcid.org/0000-0003-4182-5159Moises Mallo8https://orcid.org/0000-0002-9744-0912Instituto Gulbenkian de Ciência, Oeiras, PortugalInstituto Gulbenkian de Ciência, Oeiras, PortugalCentre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United KingdomInstituto Gulbenkian de Ciência, Oeiras, PortugalCentre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United KingdomInstituto Gulbenkian de Ciência, Oeiras, PortugalInstituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Ciências da Universidade de Lisboa, Lisboa, PortugalCentre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United KingdomInstituto Gulbenkian de Ciência, Oeiras, PortugalFormation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.https://elifesciences.org/articles/56615snai1tgfbr1EMTaxial progenitorstail budaxial elongation
spellingShingle André Dias
Anastasiia Lozovska
Filip J Wymeersch
Ana Nóvoa
Anahi Binagui-Casas
Daniel Sobral
Gabriel G Martins
Valerie Wilson
Moises Mallo
A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation
eLife
snai1
tgfbr1
EMT
axial progenitors
tail bud
axial elongation
title A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation
title_full A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation
title_fullStr A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation
title_full_unstemmed A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation
title_short A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation
title_sort tgfbr1 snai1 dependent developmental module at the core of vertebrate axial elongation
topic snai1
tgfbr1
EMT
axial progenitors
tail bud
axial elongation
url https://elifesciences.org/articles/56615
work_keys_str_mv AT andredias atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT anastasiialozovska atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT filipjwymeersch atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT ananovoa atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT anahibinaguicasas atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT danielsobral atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT gabrielgmartins atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT valeriewilson atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT moisesmallo atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT andredias tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT anastasiialozovska tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT filipjwymeersch tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT ananovoa tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT anahibinaguicasas tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT danielsobral tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT gabrielgmartins tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT valeriewilson tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation
AT moisesmallo tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation