A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation
Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the s...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2020-06-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/56615 |
_version_ | 1817967833390252032 |
---|---|
author | André Dias Anastasiia Lozovska Filip J Wymeersch Ana Nóvoa Anahi Binagui-Casas Daniel Sobral Gabriel G Martins Valerie Wilson Moises Mallo |
author_facet | André Dias Anastasiia Lozovska Filip J Wymeersch Ana Nóvoa Anahi Binagui-Casas Daniel Sobral Gabriel G Martins Valerie Wilson Moises Mallo |
author_sort | André Dias |
collection | DOAJ |
description | Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension. |
first_indexed | 2024-04-11T09:03:35Z |
format | Article |
id | doaj.art-2737e4e803004f67abc130ae14520e08 |
institution | Directory Open Access Journal |
issn | 2050-084X |
language | English |
last_indexed | 2024-04-11T09:03:35Z |
publishDate | 2020-06-01 |
publisher | eLife Sciences Publications Ltd |
record_format | Article |
series | eLife |
spelling | doaj.art-2737e4e803004f67abc130ae14520e082022-12-22T04:32:41ZengeLife Sciences Publications LtdeLife2050-084X2020-06-01910.7554/eLife.56615A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongationAndré Dias0https://orcid.org/0000-0003-3337-6373Anastasiia Lozovska1https://orcid.org/0000-0002-9842-6450Filip J Wymeersch2https://orcid.org/0000-0001-8999-4555Ana Nóvoa3https://orcid.org/0000-0002-5668-5630Anahi Binagui-Casas4https://orcid.org/0000-0002-7987-9286Daniel Sobral5https://orcid.org/0000-0003-3955-0117Gabriel G Martins6https://orcid.org/0000-0002-6506-9776Valerie Wilson7https://orcid.org/0000-0003-4182-5159Moises Mallo8https://orcid.org/0000-0002-9744-0912Instituto Gulbenkian de Ciência, Oeiras, PortugalInstituto Gulbenkian de Ciência, Oeiras, PortugalCentre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United KingdomInstituto Gulbenkian de Ciência, Oeiras, PortugalCentre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United KingdomInstituto Gulbenkian de Ciência, Oeiras, PortugalInstituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Ciências da Universidade de Lisboa, Lisboa, PortugalCentre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United KingdomInstituto Gulbenkian de Ciência, Oeiras, PortugalFormation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.https://elifesciences.org/articles/56615snai1tgfbr1EMTaxial progenitorstail budaxial elongation |
spellingShingle | André Dias Anastasiia Lozovska Filip J Wymeersch Ana Nóvoa Anahi Binagui-Casas Daniel Sobral Gabriel G Martins Valerie Wilson Moises Mallo A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation eLife snai1 tgfbr1 EMT axial progenitors tail bud axial elongation |
title | A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation |
title_full | A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation |
title_fullStr | A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation |
title_full_unstemmed | A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation |
title_short | A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation |
title_sort | tgfbr1 snai1 dependent developmental module at the core of vertebrate axial elongation |
topic | snai1 tgfbr1 EMT axial progenitors tail bud axial elongation |
url | https://elifesciences.org/articles/56615 |
work_keys_str_mv | AT andredias atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT anastasiialozovska atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT filipjwymeersch atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT ananovoa atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT anahibinaguicasas atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT danielsobral atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT gabrielgmartins atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT valeriewilson atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT moisesmallo atgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT andredias tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT anastasiialozovska tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT filipjwymeersch tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT ananovoa tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT anahibinaguicasas tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT danielsobral tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT gabrielgmartins tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT valeriewilson tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation AT moisesmallo tgfbr1snai1dependentdevelopmentalmoduleatthecoreofvertebrateaxialelongation |