Social behavioural adaptation in Autism.
Autism is still diagnosed on the basis of subjective assessments of elusive notions such as interpersonal contact and social reciprocity. We propose to decompose reciprocal social interactions in their basic computational constituents. Specifically, we test the assumption that autistic individuals d...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-03-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1007700 |
Summary: | Autism is still diagnosed on the basis of subjective assessments of elusive notions such as interpersonal contact and social reciprocity. We propose to decompose reciprocal social interactions in their basic computational constituents. Specifically, we test the assumption that autistic individuals disregard information regarding the stakes of social interactions when adapting to others. We compared 24 adult autistic participants to 24 neurotypical (NT) participants engaging in a repeated dyadic competitive game against artificial agents with calibrated reciprocal adaptation capabilities. Critically, participants were framed to believe either that they were competing against somebody else or that they were playing a gambling game. Only the NT participants did alter their adaptation strategy when they held information regarding others' competitive incentives, in which case they outperformed the AS group. Computational analyses of trial-by-trial choice sequences show that the behavioural repertoire of autistic people exhibits subnormal flexibility and mentalizing sophistication, especially when information regarding opponents' incentives was available. These two computational phenotypes yield 79% diagnosis classification accuracy and explain 62% of the severity of social symptoms in autistic participants. Such computational decomposition of the autistic social phenotype may prove relevant for drawing novel diagnostic boundaries and guiding individualized clinical interventions in autism. |
---|---|
ISSN: | 1553-734X 1553-7358 |