Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion Deblurring

Blur kernel (BK) estimation is the crucial technique to guarantee the success of blind image deblurring. In this paper, we propose a multi-regularization-constrained method to estimate an accurate BK from a single motion-blurred image. First, in order to generate sharp and reliable intermediate late...

Full description

Bibliographic Details
Main Authors: Shu Tang, Wanpeng Zheng, Xianzhong Xie, Tao He, Peng Yang, Lei Luo, Zhixing Li, Yu Hu, Hao Zhao
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8600319/
_version_ 1818415873039269888
author Shu Tang
Wanpeng Zheng
Xianzhong Xie
Tao He
Peng Yang
Lei Luo
Zhixing Li
Yu Hu
Hao Zhao
author_facet Shu Tang
Wanpeng Zheng
Xianzhong Xie
Tao He
Peng Yang
Lei Luo
Zhixing Li
Yu Hu
Hao Zhao
author_sort Shu Tang
collection DOAJ
description Blur kernel (BK) estimation is the crucial technique to guarantee the success of blind image deblurring. In this paper, we propose a multi-regularization-constrained method to estimate an accurate BK from a single motion-blurred image. First, in order to generate sharp and reliable intermediate latent results, we propose a model which combines the spatial scale, <inline-formula> <tex-math notation="LaTeX">${L} _{0}$ </tex-math></inline-formula> norm, and the dark channel prior. Second, in order to preserve the continuity and the sparsity, and to remove the flaw in the BK, a dual-constrained regularization model, which combines the <inline-formula> <tex-math notation="LaTeX">${L} _{0}$ </tex-math></inline-formula>-regularized intensity prior and the <inline-formula> <tex-math notation="LaTeX">${L} _{2}$ </tex-math></inline-formula>-regularized gradient prior, is proposed for accurate BK estimation. The proposed model can not only preserve the continuity and the sparsity of the BK very well but also can remove the flaw thoroughly. Finally, we propose an efficient optimization strategy which can solve the proposed model efficiently. Extensive experiments compared with the state-of-the-art methods demonstrate that our method estimates more accurate BKs and obtains higher quality deblurring images in terms of both subjective vision and quantitative metrics.
first_indexed 2024-12-14T11:41:54Z
format Article
id doaj.art-2741bf612d90430daf0054fa25cc68df
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-14T11:41:54Z
publishDate 2019-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-2741bf612d90430daf0054fa25cc68df2022-12-21T23:02:46ZengIEEEIEEE Access2169-35362019-01-0175296531110.1109/ACCESS.2018.28894668600319Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion DeblurringShu Tang0https://orcid.org/0000-0001-7517-7992Wanpeng Zheng1Xianzhong Xie2Tao He3Peng Yang4Lei Luo5https://orcid.org/0000-0002-7008-4276Zhixing Li6Yu Hu7Hao Zhao8Chongqing Key Laboratory of Computer Network and Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, ChinaChongqing Key Laboratory of Computer Network and Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, ChinaChongqing Key Laboratory of Computer Network and Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, ChinaChongqing Key Laboratory of Computer Network and Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, ChinaChongqing Key Laboratory of Computer Network and Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, ChinaChongqing Key Laboratory of Computer Network and Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, ChinaChongqing Key Laboratory of Computer Network and Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing, ChinaThe Sixth Inspection Bureau, Chongqing Municipal Tax Service, State Administration of Taxation, Chongqing, ChinaChongqing Branch Office, China Mobile Group Design Institute Co., Ltd., Chongqing, ChinaBlur kernel (BK) estimation is the crucial technique to guarantee the success of blind image deblurring. In this paper, we propose a multi-regularization-constrained method to estimate an accurate BK from a single motion-blurred image. First, in order to generate sharp and reliable intermediate latent results, we propose a model which combines the spatial scale, <inline-formula> <tex-math notation="LaTeX">${L} _{0}$ </tex-math></inline-formula> norm, and the dark channel prior. Second, in order to preserve the continuity and the sparsity, and to remove the flaw in the BK, a dual-constrained regularization model, which combines the <inline-formula> <tex-math notation="LaTeX">${L} _{0}$ </tex-math></inline-formula>-regularized intensity prior and the <inline-formula> <tex-math notation="LaTeX">${L} _{2}$ </tex-math></inline-formula>-regularized gradient prior, is proposed for accurate BK estimation. The proposed model can not only preserve the continuity and the sparsity of the BK very well but also can remove the flaw thoroughly. Finally, we propose an efficient optimization strategy which can solve the proposed model efficiently. Extensive experiments compared with the state-of-the-art methods demonstrate that our method estimates more accurate BKs and obtains higher quality deblurring images in terms of both subjective vision and quantitative metrics.https://ieeexplore.ieee.org/document/8600319/Blind image deblurringblur kernelspatial scale<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₀-regularized intensity prior<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₂-regularized gradient prior
spellingShingle Shu Tang
Wanpeng Zheng
Xianzhong Xie
Tao He
Peng Yang
Lei Luo
Zhixing Li
Yu Hu
Hao Zhao
Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion Deblurring
IEEE Access
Blind image deblurring
blur kernel
spatial scale
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₀-regularized intensity prior
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₂-regularized gradient prior
title Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion Deblurring
title_full Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion Deblurring
title_fullStr Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion Deblurring
title_full_unstemmed Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion Deblurring
title_short Multi-Regularization-Constrained Blur Kernel Estimation Method for Blind Motion Deblurring
title_sort multi regularization constrained blur kernel estimation method for blind motion deblurring
topic Blind image deblurring
blur kernel
spatial scale
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₀-regularized intensity prior
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₂-regularized gradient prior
url https://ieeexplore.ieee.org/document/8600319/
work_keys_str_mv AT shutang multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT wanpengzheng multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT xianzhongxie multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT taohe multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT pengyang multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT leiluo multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT zhixingli multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT yuhu multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring
AT haozhao multiregularizationconstrainedblurkernelestimationmethodforblindmotiondeblurring