Geometry of bracket-generating distributions of step 2 on graded manifolds

A $Z_2-$graded analogue of bracket-generating distribution is given. Let $\cd$ be a distribution of rank $(p,q)$ on an $(m,n)$-dimensional graded manifold $\cm,$ we attach to $\cd$ a linear map $F$ on $\cd$ defined by the Lie bracket of graded vector fields of the sections of $\cd.$ Then $\mathcal{D...

Full description

Bibliographic Details
Main Authors: Esmaeil Azizpour, Dordi Mohammad Ataei
Format: Article
Language:English
Published: Emrah Evren KARA 2018-09-01
Series:Universal Journal of Mathematics and Applications
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/542746
_version_ 1797350185155690496
author Esmaeil Azizpour
Dordi Mohammad Ataei
author_facet Esmaeil Azizpour
Dordi Mohammad Ataei
author_sort Esmaeil Azizpour
collection DOAJ
description A $Z_2-$graded analogue of bracket-generating distribution is given. Let $\cd$ be a distribution of rank $(p,q)$ on an $(m,n)$-dimensional graded manifold $\cm,$ we attach to $\cd$ a linear map $F$ on $\cd$ defined by the Lie bracket of graded vector fields of the sections of $\cd.$ Then $\mathcal{D}$ is a bracket-generating distribution of step $2$, if and only if $F$ is of constant rank $(m-p, n-q)$ on $\cm$.
first_indexed 2024-03-08T12:41:06Z
format Article
id doaj.art-27425de001f94c4fbc6f32e24c0b6a30
institution Directory Open Access Journal
issn 2619-9653
language English
last_indexed 2024-03-08T12:41:06Z
publishDate 2018-09-01
publisher Emrah Evren KARA
record_format Article
series Universal Journal of Mathematics and Applications
spelling doaj.art-27425de001f94c4fbc6f32e24c0b6a302024-01-21T11:14:53ZengEmrah Evren KARAUniversal Journal of Mathematics and Applications2619-96532018-09-011319620110.32323/ujma.4167411225Geometry of bracket-generating distributions of step 2 on graded manifoldsEsmaeil Azizpour0Dordi Mohammad Ataei1University of Guilan, Rasht, IranUniversity of Guilan, Rasht, IranA $Z_2-$graded analogue of bracket-generating distribution is given. Let $\cd$ be a distribution of rank $(p,q)$ on an $(m,n)$-dimensional graded manifold $\cm,$ we attach to $\cd$ a linear map $F$ on $\cd$ defined by the Lie bracket of graded vector fields of the sections of $\cd.$ Then $\mathcal{D}$ is a bracket-generating distribution of step $2$, if and only if $F$ is of constant rank $(m-p, n-q)$ on $\cm$.https://dergipark.org.tr/tr/download/article-file/542746graded manifolddistribution
spellingShingle Esmaeil Azizpour
Dordi Mohammad Ataei
Geometry of bracket-generating distributions of step 2 on graded manifolds
Universal Journal of Mathematics and Applications
graded manifold
distribution
title Geometry of bracket-generating distributions of step 2 on graded manifolds
title_full Geometry of bracket-generating distributions of step 2 on graded manifolds
title_fullStr Geometry of bracket-generating distributions of step 2 on graded manifolds
title_full_unstemmed Geometry of bracket-generating distributions of step 2 on graded manifolds
title_short Geometry of bracket-generating distributions of step 2 on graded manifolds
title_sort geometry of bracket generating distributions of step 2 on graded manifolds
topic graded manifold
distribution
url https://dergipark.org.tr/tr/download/article-file/542746
work_keys_str_mv AT esmaeilazizpour geometryofbracketgeneratingdistributionsofstep2ongradedmanifolds
AT dordimohammadataei geometryofbracketgeneratingdistributionsofstep2ongradedmanifolds