Effect of the particle-size distribution variability on the SWCC predictions of coarse-grained materials

The particle-size distribution (PSD) is the key information required by several models for prediction of the soil-water characteristic curve (SWCC). The performance of these models has been extensively investigated in the literature; however, limited studies have been undertaken with respect to the...

Full description

Bibliographic Details
Main Authors: Alves Roberto, Gitirana Gilson de F.N., Vanapalli Sai K.
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2021/06/matecconf_PanAm-Unsat2021_02010.pdf
Description
Summary:The particle-size distribution (PSD) is the key information required by several models for prediction of the soil-water characteristic curve (SWCC). The performance of these models has been extensively investigated in the literature; however, limited studies have been undertaken with respect to the uncertainty associated with the SWCC predictions resulting from the variability in the PSD. This study aims to investigate the influence of the variability of the PSD in the prediction of SWCCs using five different models applied to three different glass beads (GBs). The PSD curves were determined by sieve analysis, laser diffraction, and image analysis. The various testing procedures were statistically evaluated to understand the influence of variability of the PSD in terms of the coefficient of uniformity (CU) and de size of particles corresponding to 10% in the PSD (D10). For each prediction model, a combination of PSD curves and their coefficient of variation were used to estimate the SWCCs. Both the CU and D10 proved to have a strong relationship with the predicted SWCCs. The CU appears to influence more the residual suction prediction while the D10 seems to have a major role for the transition and residual stages.
ISSN:2261-236X